
1 Elektra

1.1 De�nitions

In this abridgement of the thesis[47] we use the following de�nitions:

Con�gurations contain user preferences or other application settings.

Con�guration storage makes this information permanent. The application will read the
con�guration at every start, but it is only stored if a user changes settings.

Key databases are used because of these constraints. They can do fast key lookups and
the keys can be structured hierarchically by de�ning separators in the key names.

Global key database provides global access to all key databases of all applications.

Elektra is a library implementing access to a global key database. We improved Elektra
signi�cantly while working on this thesis as described in this abridgement.

To elektrify an application means to change the code so that it uses Elektra afterwards.

1.2 Why Elektra?

Figure 1: Elektra's
Logo

Con�gurations can be used to change the behaviour of software
for the users' needs. Because these settings stay the same across
restarts of the program, they need to be stored permanently.
Nearly every system developed its own way to read preferences.

Because the graphical user interface can be tweaked in many
ways, the most encompassing systems emerged from this area.
Some got a de facto standard for a desktop environment or an
operating system. But they have a common problem: they are bound to the platform
for which they were developed. Additionally, many libraries exist that do a good job in
parsing and writing con�guration �les. These tools are, however, not powerful enough
to keep the con�guration independent from the operating system's details.
That is where Elektra comes in to �ll the gap. On the one hand, Elektra is not tied

to any platform or operating system. On the other hand, Elektra is powerful enough to
be immediately useful for what it is written for: to access con�guration.

1.3 Classes

The shared system configuration is identical for every user. It contains, for example,
information about network related preferences and default settings for software. These
keys are created when software is installed, and removed when software is purged. Only
the administrator can change system con�guration.
The user configuration is empty until the user changes some preferences. User

con�guration a�ects only a single user. The user's settings can contain information about
the user's environment and preferred applications.

1

1.3.1 Key

KDBKDB

KeyKeyKeySetKeySet

ClassesClasses

Figure 2: Three
Classes[3]

A Key consists of a name, a value and metadata. It is the atomic
unit in the key database. Its main purpose is that it can be
serialised to be written out to permanent storage.
Key names are always absolute; so no parent or other informa-

tion is needed. That makes a Key self-contained and independent
both in memory and storage. Every key name starts with user

or system pre�xes that spawn two key hierarchies.
Metadata is data about data. The situation of Elektra 0.71 has now changed funda-

mentally by introducing arbitrary metadata for Key objects. The purpose of metadata is
to distinguish between con�guration and information about con�guration[13].

1.3.2 KeySet

The central data structure in Elektra is a KeySet. It aggregates Key objects in order to
describe con�guration in an easy but complete way.

1.3.3 KDB

While objects of Key and KeySet only reside in memory, Elektra's third class KDB provides
access to the global key database. KDB � an abbreviation of key database � is responsible
for storing and receiving con�guration. KeySet represents the con�guration when com-
municating with KDB. The typical elektri�ed application collects its con�guration by one
or many calls of kdbGet(). As soon as the program �nishes its work with the KeySet,
kdbSet() is in charge of writing all changes back to the key database.

1.4 Concepts

1.4.1 Backend

Elektra has introduced backends to support the storage of key databases in di�erent
formats. Elektra abstracts con�guration so that applications can receive and store set-
tings without carrying information about how and where these are actually stored. It is
the purpose of the backends to implement these details.

1.4.2 Mounting system/system/

apache/apache/

kde/kde/

sw/sw/

apacheapache iniini

fstab/fstab/

fstabfstab

dumpdump

Figure 3: Mounting in Elektra

Mounting in Elektra[48] speci�cally al-
lows us to map a part of the global key
database to be handled by a di�erent
con�guration storage. It allows multi-
ple backends to deal with con�guration
at the same time. Each of them is re-
sponsible for its own subtree of the global key database. In Figure 3, we see several such

1previous version of Elektra

2

subtrees, for example system/sw or system/sw/apache. Backends (written in bold letters)
handle the con�guration storage in these subtrees.

1.4.3 Abstraction

Portable and not Portable SoftwarePortable and not Portable Software
JavaJava, Apache, Samba, KDE, /sbin/init, ..., Apache, Samba, KDE, /sbin/init, ...

C
o
n

fi
g

F
il
e

C
o
n

fi
g

F
il
e

C
o
n

fi
g

F
il
e

C
o
n

fi
g

F
il
e

W
in

R
e
g

W
in

R
e
g

C
o
n

fi
g

F
il
e

C
o
n

fi
g

F
il
e

S
in

g
le

F
il
e

S
in

g
le

F
il
e

C
o
n

fi
g

F
il
e

C
o
n

fi
g

F
il
e

S
in

g
le

F
il
e

S
in

g
le

F
il
e

O
p

e
n

D
ir

O
p

e
n

D
ir

C
o
n

fi
g

F
il
e

C
o
n

fi
g

F
il
e

S
in

g
le

F
il
e

S
in

g
le

F
il
e

BackendsBackends

Elektra API :: Abstraction LayerElektra API :: Abstraction Layer

BindingsBindings

Figure 4: Elektra as Abstraction Layer, thanks to Avi Alkalay[3]

To support a global key database, a mutual agreement on some level is needed. Each
elektri�ed application lies on top of this abstraction layer and can talk to each part of
the global key database using the classes presented before.

2 Approach

2.1 Problem

It turned out that the �le system semantics and the way Elektra 0.7 handles the capa-
bilities of backends and metadata of keys are inappropriate for a key database.

2.1.1 Missing Modularity

Sharing code between backends is known to be a critical task. In Elektra 0.7, contrary
to what is expected, code from a backend could not be reused. Missing reuse presents
a major problem because backends have many common aspects. Additionally, program-
mers cannot just take features of other backends because the code is interwoven with
other code.

2.1.2 Dependences

In version 0.7, Elektra's core directly communicates with the backends. This approach
makes it optional whether to implement advanced features in the core or in the backend.
In order to be portable, Elektra's core must avoid dependences to other libraries. In
backends, dependences are acceptable if, and only if, they support the speci�c task of
this backend. The main task of a backend, however, is reading and writing con�guration.
This fact made it hard to develop further features.

3

2.1.3 Build System

It has been impossible to turn features of backends on and o� at run time. A partial
and problematic solution is the former complex build system in Elektra 0.7 that allowed
us to switch some functionality on and o� at compile time. Precompiled versions of
Elektra 0.7, however, either lack needed features or have considerable space and time
overhead because of unnecessary features.

2.1.4 Development Time

Writing backends has revealed itself to be a time-consuming task because of the many
requirements exposed to backends. Let us assume that a programmer receives a list
of requirements the con�guration system needs to handle. It is very unlikely that an
existing backend already ful�ls these requirements. Writing a completely new backend
means the same e�ort as writing a new con�guration library. As a result, programmers
will probably decide to build their own solutions. Elektra will only be considered useful
in situations where its bene�t of providing a global key database is needed.

2.2 New Approach

Implementing too many features in one backend is problematic. Many di�erent aspects
clutter the code, making the backends unmaintainable. It was impossible to implement
powerful and feature-rich backends so far because of the lack of modularity. Desirable
features like noti�cation and type checking have always been in the developers' minds,
but there was no place where it would �t in without making the system unmaintainable,
unportable, complex and full of unwanted external dependences.
To solve this dilemma, we propose that multiple plugins together build up a back-

end. Each plugin implements a single concrete requirement and it does that well[41].
The key set processed by one plugin will be passed to the next. Using this approach, the
plugins provide the desired separation of concerns inside a backend.

ApplicationApplication

LibelektraLibelektra

BackendBackend

ApplicationApplication

LibelektraLibelektra

Filter PluginFilter Plugin

......

Storage PluginStorage Plugin

n Plugins = 1 Backendn Plugins = 1 Backend

Figure 5: Introduction of Multiple Plugins

This architecture allows plugins to have external dependence. Not every plugin has
the burden to be portable anymore. Maintainers can decide if a plugin should be built

4

for a speci�c platform or not. Users then can choose which plugins they want to install
and use. And �nally, the administrator can choose which of the plugins should be loaded
for each mounted backend. If a speci�c feature is not needed, it is not included and does
not cause additional overhead. Given the chosen approach, the core of Elektra can stay
minimal.
Now let us look at the development time with multiple plugins. The programmer

will �nd many reusable plugins. Some of them already ful�l given requirements. While
checking the code quality of the plugins, the programmer actually learns how the plugin
works, how to extend it and how to write a new one. Considering that point of view, the
programmer will decide to use Elektra.

2.2.1 Storage Plugin

Plugins concerned with reading and writing to permanent storage are called storage

plugins. Their purpose is to make con�guration permanent in key databases and to
parse the preferences from there. Metadata can help to reconstruct con�guration-speci�c
information, like comments, ordering and line numbers.

2.2.2 Resolver Plugin

The resolver plugin has the responsibility for non-portable tasks like resolving the con-
�guration's �le name and overwriting this �le in an atomic way. It guarantees that the
con�guration is only updated if needed and detects con�icts.
The idea of extracting all the operating system-dependent parts from the storage plug-

ins opens many possibilities. The most important one is to add the support of another
operating system by writing a new resolver plugin. Moreover, di�erent strategies can
be used on a single operating system depending on the user's requirements. This ap-
proach allows the method of resolving to be adapted di�erently to �t the user's needs
even better.

2.2.3 Contract

Each plugin in a backend can cause run time errors. Additionally, the chaining of the
plugins can introduce further run time errors. For example, a plugin can modify keys in
a way that the next plugin cannot process these keys anymore. Or a plugin can omit
changes to the keys that are required by the next plugin.
To deal with such situations in a controlled way, each plugin exports a contract that

describes the interaction with other parts of the backend. The contract contains well-
de�ned clauses, has no hidden clauses[42] and is described using a key set.
The contract checker

2 revises contracts of plugins during the mounting of back-
ends. It can refuse to add a plugin to the backend because of a con�ict or a constraint.
As long as not all contracts are satis�ed the contract checker denies the mounting and
waits for more plugins to be attached.

2implemented in the kdb commandline tool

5

2.2.4 Ordering

Multiple plugins open many doors in which way they can be arranged in a backend.
Elektra now uses three arrays of plugins. The plugins to get and to set con�guration are
separated because the order of execution sometimes di�ers. Additionally, the resolver
plugin requires a third list to do a proper rollback when the writing fails. The order of
plugins inside these three arrays is controlled by the contracts.

3 Implementation

3.1 Architecture

Plugin Trie

KDB

+ kdbSet()
+ kdbGet()
+ kdbOpen()
+ kdbClose()

1

ModuleCache

Split

libloader

Modules

+ elektraModulesInit()
+ elektraModulesLoad()
+ elektraModulesClose()

0..*
2..*

1..n

insert

1

1
load

Backend

Diagramm: Klassendiagramm Seite 1

Figure 6: Architecture

We changed the internal architecture from the ground up to support multiple plugins.
Elektra now provides a small internal API to load modules independently from the op-
erating system. This API also hides the fact that modules must be loaded dynamically
if they are not available statically. From these modules plugins can be created that are
gathered together in the backend data structure. We see that the concepts introduced
earlier have a representation in a data structure.
Those backends can be mounted anywhere in the key hierarchy. The mapping of key

names to a speci�c backend is done with the data structure trie. The split object holds
all keys in regard to the backend they belong to.

3.2 Mount Point Con�guration

One important aspect of a con�guration library is the out-of-the-box experience. A
so-called default backend is responsible in the case that nothing was con�gured so
far. To avoid reimplementation of storage plugins, for default storage plugins a resolver
plugin additionally takes care of the inevitable portability issues. The default backend is
guaranteed to stay mounted at system/elektra where the con�guration for Elektra itself
is stored. Applications and administrators can mount speci�c backends. Each of these

6

backends are built up by a number of plugins. On opening the global key database, the
system bootstraps itself, starting with the default backend.

3.3 Error Handling

It is sometimes unavoidable that errors or other problems occur that ultimately have
an impact on the user. Elektra now gathers all information in these situations. All KDB
methods take a Key object as a parameter. This key is also passed to every plugin. The
idea is to add the error and warning information as metadata to this key. This approach
provides �exibility, because a key can hold a potentially unlimited number of metadata.
So the library always informs the user about what has happened, but does not print or
log anything itself.

3.3.1 Error Speci�cation

The error speci�cation in Elektra is written in colon-separated entries of a simple text
�le. Each entry has a unique identi�er and general information about the error. No part
of Elektra ever reads this �le directly. Instead it is used to generate source code which
contains everything needed to add a particular error or warning information. With that
�le we achieved a central place for error-related information. All other locations are
automatically generated instead of having error-prone duplicated code. This principle is
called �Don't repeat yourself�[30].

3.3.2 Exceptions

BindingBinding

PluginPlugin

BindingBinding

ApplicationApplication

ElektraElektra

Throws ExceptionThrows Exception

⇒ ⇒ Error InformationError Information

Error Information Error Information ⇒⇒

Receives ExceptionReceives Exception

Figure 7: Exception Flow

Elektra was designed so that both plug-
ins and applications can be written in
languages that provide exceptions as
shown in Figure 7. One design goal
of Elektra's error system is to trans-
port exception-related information in a
language-neutral way from the plugins to the applications. To do so, a language binding
of the plugin needs to catch every exception and transform it into appropriate metadata
describing the error.

3.4 Algorithm

3.4.1 kdbSet

kdbSet() stores a key set permanently. Robust and reliable behaviour is the most im-
portant issue for kdbSet(). kdbSet() guarantees the following properties:

1. Additional in-memory comparisons are preferred to suboptimal storage access.
Modi�cations to permanent storage are only made when the respective con�gu-
ration was changed.

7

2. When errors occur, every plugin gets a chance to roll back its changes. If every
plugin does this correctly, nothing is changed in the key database. Plugins devel-
oped during the thesis meet this requirement.

3. When no error occurs, the whole KeySet is written to permanent storage.

The plugins can fail for a variety of reasons within kdbSet(). The most frequent
occurrences are conflicts. A con�ict means that between executions of kdbGet() and
kdbSet() another program has changed the key database. In order not to lose any
data, kdbSet() fails without doing anything. In con�ict situations Elektra leaves the
programmer no choice. The programmer has to retrieve the con�guration using kdbGet()

to be up to date with the key database. Afterwards it is up to the application to decide
which con�guration to use or how to merge it together.

3.4.2 kdbGet

kdbGet() is responsible for retrieving con�guration. Retrieving con�guration is a rather
easy job, because kdbSet() already guarantees that only well formatted, non-corrupted
and well-typed con�guration is written out in the key database. The remaining task is to
check if the con�guration is up to date using the resolver plugin, to query all requested
backends for their con�guration and then merge everything.

4 Plugins

Plugins implement speci�c features regarding con�guration. Figure 8 presents an overview
of the plugins we developed in this thesis.

network

Plugin

Storage Plugin

Application

Checker

Default Storage Limited Storage

type

glob

Code

hexcode

hosts

iconv

ni

null

simpleini

syslog

tcl

timeofday

tracer

validation

xmltool

Filter

dump

path

struct

ccode

Cross Cutting

error

fstab

hidden

resolver

dbus

Diagramm: Klassendiagramm Seite 1

Figure 8: Overview of Plugins

Every plugin provides a full contract to give information how it will work together
with other plugins. Most parts of the contract are obligatory. Plugins cannot be loaded

8

without this information.
Every plugin can have a plugin configuration given during mounting. For plugins

providing the same feature the plugin con�guration should be interchangeable, providing
the advantage that the plugins are a drop-in replacement for each other.

4.1 Filter

Filter plugins process keys and their values in both directions. In one direction they
undo what they do in the other direction. They can be chained together.

4.1.1 Character Reduction and Conversion

To store a large range of di�erent characters in a sink that allows only a subset of
characters to occur there, a plugin must reduce the range of characters in a reversible
way. Contracts of storage plugins de�ne which characters must disappear so that the
storage plugin can be used without problems. The contract checker deduces a plugin
con�guration for the �lter plugin de�ning which characters should be escaped.
Another �lter plugin converts values between di�erent encodings. On the one hand,

it can be used to support applications that do not work with the encoding of the key
database. On the other hand, it can be used to support key databases with di�erent
encodings.

4.2 Pluggable Checker

Elektra works completely without integrated type checking on keys. Instead it provides
pluggable checkers as plugins. They are executed before the storage plugin writes
out the con�guration and make sure that the con�guration is valid, consistent and com-
plete. Pluggable checkers assure that problematic con�guration is never passed to the
storage plugin. To provide maximum �exibility, the applying and checking of types is
separated. This establishes a two-phase type checking.

4.2.1 Apply Metadata

In a �rst phase, concrete dynamic type information is applied as metadata to keys by
matching key names with glob expressions or with recursive structures. For some storage
plugins missing keys are as fatal as not validated keys � it would not be possible to write
a valid con�guration �le. So in this step additional structure checks can take place. For
example, the struct plugin veri�es if a speci�c child, sibling or parent Key is present.

4.2.2 Check Plugins

In a second phase, checks given by metadata will be executed. These two steps are
independent from each other and have their own use cases. Check plugins can also use
metadata from the storage.

9

A common and successful type system happens to be CORBA. The type check

plugin supports all basic CORBA types. Additionally, new types can be created by
uni�cation of existing types.
The validation plugin works as a powerful tool to check strings using regular ex-

pressions. They provide a way to reduce the set of allowed values for a key value. We
also implemented plugins for speci�c purposes, like network addresses or if a path exists
or not.

5 Evaluation

5.1 Con�guration Libraries

Dozens of other libraries exist, that can be used for storage plugins. We investigated
these parsers and decided to use one of them for a case study. The implementation of
this proof-of-concept plugin took slightly more than one hour. Arbitrary strings work
out-of-the-box without any �lter plugin and the plugin also gracefully handles all kinds
of syntactic errors found in con�guration �les.

5.2 Benchmark

In the current situation, additional plugins have only a fraction of the overall run time
costs. Plugins with side e�ects are no problem in terms of time penalty. The overhead
of plugins that iterate over all keys is also insigni�cant. We conclude that it presents no
problem to split up all cross-cutting concerns in di�erent plugins.
But plugins that change all values of keys should only be used with care. Ideally, only

a single plugin should be concerned with all or most encoding issues. But changing all
values still costs only 1% of the overall instructions in the benchmark. As desired, the
actual writing and reading consumes by far the largest part of the needed run time.

5.3 Modularity

We implemented 4 plugins3 for noti�cation and logging and 5 more plugins related to
�ltering. Additionally, 4 plugins can validate con�guration4. 7 plugins actually read
and write con�guration. Using a storage plugin with another plugin yields 13 · 7 = 91
possibilities to form a backend. It would not have been possible for us to add all these
features to all of the 7 storage plugins.
But our approach is even more powerful because it allows us to use more than one

additional plugin. If we take 4 plugins out of the pool of 13 plugins, we have 13!
4!(13−4)! =

715 ways to enrich the 7 storage plugins with additional features.

3All plugins implemented during the thesis are shown in Figure 8.
4The two plugins that apply the metadata will help them.

10

References

[1] D. Abrahams. Exception-safety in generic components. Generic Programming, pages
69�79, 2000.

[2] J. Adamek and F. Plasil. Erroneous architecture is a relative concept. In Software
Engineering and Applications (SEA) conference, pages 715�720. Citeseer.

[3] A. Alkalay. Linux registry. Talk at KDE Community World Summit, August 2004.

[4] C. Amsüss. private conversation.

[5] C. Andreae, J. Noble, S. Markstrum, and T. Millstein. A framework for implement-
ing pluggable type systems. ACM SIGPLAN Notices, 41(10):74, 2006.

[6] F. Bachmann, L. Bass, C. Buhrman, S. Cornella-Dorda, F. Long, J. Robert, R. Sea-
cord, and K. Wallnau. Volume II: Technical concepts of component-based software
engineering. Technical report, 2000.

[7] Waldo Bastian. XDG Base Directory Speci�cation. http://standards.

freedesktop.org/basedir-spec/basedir-spec-latest.html, June 2010.

[8] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. Yaml ain't markup language
(yamlTM). http://www.yaml.org/spec/, October 2009.

[9] Jon Louis Bentley. Writing E�cient Programs. Prentice Hall, �rst edition, 1982.

[10] J. Bloch. How to design a good API and why it matters. In Companion to the 21st
ACM SIGPLAN symposium on Object-oriented programming systems, languages,
and applications, page 507. ACM, 2006.

[11] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz, and
Alan Schmitt. Boomerang: resourceful lenses for string data. In POPL '08: Pro-
ceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 407�419, New York, NY, USA, 2008. ACM.

[12] Frederick P. Brooks. The mythical man-month: essays on software engineering.

[13] EB Bruce and WG Daniel. Metadata standards and Metadata Registries: An
Overview. In The International Conference on Establishment Surveys II. Bu�alo.
Citeseer, 2000.

[14] M. Burgess. On the theory of system administration. Science of Computer Pro-
gramming, 49(1-3):1�46, 2003.

[15] M. Burgess and A. Couch. Autonomic computing approximated by �xed-point
promises. In Proceedings of the First IEEE International Workshop on Modeling
Autonomic Communication Environments (MACE), Multicon Verlag, pages 197�
222, 2006.

11

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://www.yaml.org/spec/

[16] M. Burgess et al. Cfengine: a site con�guration engine. USENIX Computing systems,
8(3):309�402, 1995.

[17] B. Chin, D. Marino, S. Markstrum, and T. Millstein. Enforcing and validating
user-de�ned programming disciplines. In Proceedings of the 7th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineering, page 86.
ACM, 2007.

[18] SC Crawley and KR Duddy. Improving Type-Safety in CORBA. In Proceedings of
IFIP Intl. Conf. on Distributed Systems Platforms and Open Distributed Processing.

[19] M. Ebner, A. Yin, and M. Li. De�nition and Utilisation of OMG IDL to TTCN-
3 Mappings. In Testing of communicating systems XIV: application to Internet
technologies and services: IFIP TC6/WG6. 1 Fourteenth International Conference
on Testing of Communicating Systems (TestCom 2002), March 19-22, 2002, Berlin,
Germany, page 443. Springer Netherlands, 2002.

[20] Michael D. Ernst. Type Annotations speci�cation (JSR 308). http://types.cs.

washington.edu/jsr308/, September 2008.

[21] B. Ford. Parsing expression grammars: a recognition-based syntactic foundation.
ACM SIGPLAN Notices, 39(1):122, 2004.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Design. Professional Computing Series. Addison Wesley,
1995.

[23] C. Garion and L. van der Torre. Design By Contract. Coordination, organization,
institutions and norms in agent systems I, July 2005.

[24] A. Geppert and K.R. Dittrich. Speci�cation and implementation of consistency con-
straints in object-oriented database systems: Applying programming-by-contract. In
Proceedings. GI-Conference BTW, 1994.

[25] Object Management Group. Omg idl syntax and semantics.

[26] P. Gühring. private conversation.

[27] Carsten Haitzler. Eet library documentation. http://docs.enlightenment.org/

api/eet/html/, 2008.

[28] Helmut Herold. C-Kompaktreferenz. Addison-Wesley, �rst edition, 2002.

[29] I.M. Holland. Specifying reusable components using contracts. In ECOOP'92 Eu-
ropean Conference on Object-Oriented Programming, page 287. Springer, 1992.

[30] A. Hunt and D. Thomas. The pragmatic programmer: from journeyman to master.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 2000.

12

http://types.cs.washington.edu/jsr308/
http://types.cs.washington.edu/jsr308/
http://docs.enlightenment.org/api/eet/html/
http://docs.enlightenment.org/api/eet/html/

[31] S. Josefsson. The base16, base32, and base64 data encodings, 2003.

[32] Brian W. Kernighan and Dennis M. Ritchie. C Programming Language. Prentice
Hall, second edition, 1988.

[33] Kerninghan and Plauger. The Elements of Programming Style.

[34] M.F. Kra�t. The Debian system: concepts and techniques. Open Source Press, 2005.

[35] M. Lackner, A. Krall, and F. Puntigam. Supporting design by contract in Java.
Journal of Object Technology, 1(3):57�76.

[36] Simon Law and Patrick Patterson. UniConf, GConf, KCon�g, D-BUS, Elektra,
oh my! http://alumnit.ca/wiki/attachments/uniconf_universal.pdf, 2005.
Desktop Developers' Conference.

[37] John R. Levine. Linkers and Loaders. Morgan Kaufmann, �rst edition, 2000.

[38] R. Love. Get on the D-BUS. Linux Journal, 2005(130):3, 2005.

[39] David Lutterkort. Augeas - a con�guration API. http://www.kernel.org/doc/

ols/2008/ols2008v2-pages-47-56.pdf, 2008.

[40] Wilson Mar. Escape Characters. http://www.wilsonmar.com/1eschars.htm, Au-
gust 2010.

[41] MD McIlroy, EN Pinson, and BA Tague. Unix time-sharing system forward. The
Bell system technical journal, 57(6 part 2):1902, 1978.

[42] B. Meyer. Applying design by contract. Computer, 25(10):51, 1992.

[43] Thomas Ottmann and Peter Widmayer. Algorithmen und Datenstrukturen. Spek-
trum, Akad. Verl., fourth edition, 2002.

[44] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Je� H. Perkins, and
Michael D. Ernst. Practical pluggable types for Java. In ISSTA 2008, Proceed-
ings of the 2008 International Symposium on Software Testing and Analysis, pages
201�212, Seattle, WA, USA, July 2008.

[45] B. Peirce. Linear associative algebra. Van Nostrand, 1882.

[46] Avery Pennarun. Uniconf. http://alumnit.ca/wiki/attachments/uniconf.pdf,
May 2003.

[47] Markus Raab. A modular approach to con�guration storage. Master's thesis, TU
Wien, September 2010.

[48] Markus Raab and Patrick Sabin. Implementation of Multiple Key Databases for
Shared Con�guration. ftp://www.markus-raab.org/elektra.pdf, March 2008.

13

http://alumnit.ca/wiki/attachments/uniconf_universal.pdf
http://www.kernel.org/doc/ols/2008/ols2008v2-pages-47-56.pdf
http://www.kernel.org/doc/ols/2008/ols2008v2-pages-47-56.pdf
http://www.wilsonmar.com/1eschars.htm
http://alumnit.ca/wiki/attachments/uniconf.pdf
ftp://www.markus-raab.org/elektra.pdf

[49] D. Robbins. Common threads: Advanced �lesystem implementer's guide, Part 1.
IBM Developer Works, http://www.ibm.com/developerworks/library/l-fs.html, 2001.

[50] V. Samar. Uni�ed login with pluggable authentication modules (PAM). In Proceed-
ings of the 3rd ACM conference on Computer and communications security, page 10.
ACM, 1996.

[51] J. Siméon and P. Wadler. The essence of XML. ACM SIGPLAN Notices, 38(1):1�13,
2003.

[52] T.A. Standish. Data structures, algorithms and software principles in C. Addison
Wesley, 1995.

[53] B. Stroustrup. Exception safety: concepts and techniques. Advances in exception
handling techniques, pages 60�76, 2001.

[54] Bjarne Stroustrup. The design and evolution of C++. ACM Press/Addison-Wesley
Publishing Co. New York, NY, USA, 1995.

[55] Gary V. Vaughn, Ben Ellison, Tom Tromey, and Ian Lance Taylor. GNU Autoconf,
Automake and Libtool. New Riders, �rst edition, 2000.

[56] J. Weidendorfer, M. Kowarschik, and C. Trinitis. A tool suite for simulation based
analysis of memory access behavior. Computational Science-ICCS 2004, pages 440�
447, 2004.

[57] Girish Welling and Maximilian Ott. Customizing idl mappings and orb protocols.
In Middleware '00: IFIP/ACM International Conference on Distributed systems
platforms, pages 396�414, Secaucus, NJ, USA, 2000. Springer-Verlag New York,
Inc.

[58] E. Wohlstadter, S. Jackson, and P. Devanbu. Design and implementation of dis-
tributed crosscutting features with DADO. In Software Engineering, 2004. ICSE
2004. Proceedings. 26th International Conference on, pages 706�707, 2004.

[59] Cli�ord Wolf. The craft of api design. http://www.clifford.at/papers/2008/

apidesign/, September 2008.

[60] C.P. Wright, R. Spillane, G. Sivathanu, and E. Zadok. Extending ACID semantics
to the �le system. ACM Transactions on Storage (TOS), 3(2):4, 2007.

14

http://www.clifford.at/papers/2008/apidesign/
http://www.clifford.at/papers/2008/apidesign/

	1 Elektra
	1.1 Definitions
	1.2 Why Elektra?
	1.3 Classes
	1.3.1 Key
	1.3.2 KeySet
	1.3.3 KDB

	1.4 Concepts
	1.4.1 Backend
	1.4.2 Mounting
	1.4.3 Abstraction

	2 Approach
	2.1 Problem
	2.1.1 Missing Modularity
	2.1.2 Dependences
	2.1.3 Build System
	2.1.4 Development Time

	2.2 New Approach
	2.2.1 Storage Plugin
	2.2.2 Resolver Plugin
	2.2.3 Contract
	2.2.4 Ordering

	3 Implementation
	3.1 Architecture
	3.2 Mount Point Configuration
	3.3 Error Handling
	3.3.1 Error Specification
	3.3.2 Exceptions

	3.4 Algorithm
	3.4.1 kdbSet
	3.4.2 kdbGet

	4 Plugins
	4.1 Filter
	4.1.1 Character Reduction and Conversion

	4.2 Pluggable Checker
	4.2.1 Apply Metadata
	4.2.2 Check Plugins

	5 Evaluation
	5.1 Configuration Libraries
	5.2 Benchmark
	5.3 Modularity

