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Abstract

Elektra [10] is a framework for configuration management. It stores configuration values
in a hierarchical manner using unique names for each value. Recently a new high-level
Application Programming Interface (API) was added to make developing with Elektra
easier and safer.

LCDproc [8] is a suite of applications used to display various information, primarily
system information like CPU load and memory usage, on LCD devices. It is built as
a server/client system to allow remote monitoring. The whole code base of LCDproc
is quite old and uses a very limited custom parser to load INI files as its configuration
framework.

In this thesis, we took this opportunity and created new Elektra-based versions of
LCDproc. We will use these to compare the existing low-level API against the new high-
level API and to evaluate the high-level API in general. In addition, we will investigate
the implementation of the high-level API and see how it achieves the additional safety it
promises.

From a strictly objective standpoint, our results indicate that Elektra’s high-level API
comes with an expected overhead compared to the low-level API. In many cases, this
overhead is small to non-existent in terms of run-time, while the memory overhead is
needed for the specifications and better validation. We will also show that the Elektra-
based code is in fact easier to understand and maintain, in the sense that using Elektra
results in shorter code with less branching.
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CHAPTER 1
Introduction

1.1 Background

1.1.1 Elektra

Today there are many configuration file formats. Most of the time specialized parsers
are required for all of these formats. Elektra tries to solve the problem of choosing one
format by providing a single consistent API for different formats.

The basic principle behind Elektra is a global key-value database, the key database (KDB).
Each configuration value stored in the database corresponds to a key-value pair. We
call the key part of this pair, i.e. the name under which the value can be found in the
KDB, its key name, while the value itself is referred to as the key value. The term key,
meanwhile, will be used to refer to the key-value pair as a whole.

The key names are similar to UNIX file paths in their structure. Like in UNIX paths,
a slash (/) is used to separate parts creating a kind of hierarchy. In Elektra there is,
however, no difference between “files” and “directories.” A single key may have a value
and be the parent of other keys at the same time.

We say key A is the parent of key B, if their key names are the same, except that B has
exactly one additional part. If B has more than one additional part, we say it is below A.

Each key has an arbitrary number of meta keys with corresponding meta values.

Since it would be exceedingly inconvenient to have the configuration for all programs
using Elektra in a single file, it is possible to split the KDB into multiple files. This
is done through so called mountpoints. There is again a parallel to UNIX filesystems.
In UNIX, you can mount one filesystem into another, by telling the operating system
that everything under a certain path is part of the other filesystem. Similarly, you can
instruct Elektra to use a different file below a certain key.
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1. Introduction

The actual translation of files into a key set (a part of the KDB), is done by storage
plugins. Elektra knows many types of plugins, apart from storage plugins the most
notable are validation plugins. Validation plugins are used to verify that a key set
conforms to a predefined specification.

To discuss how Elektra’s specifications work, we first need to discuss another feature:
namespaces. In Elektra keys are grouped into namespaces. These namespaces are
system, user, dir and the special spec namespace. Every key name must either have
one of these namespaces as its first part, or the first part must be empty — i.e. it starts
with a slash (/). Keys that do not have a namespace are called cascading keys. These are
resolved to one of the namespaces (except spec), when we search for them in a key set.

All this might sound confusing, but serves an important purpose. The system namespace
is used for keys that are the same across the whole system. The files that store these are
kept in a system-wide unique directory (e.g. /etc/kdb). However, some users of the
system might want a different configuration. For that purpose the user namespace exists.
Its files are stored inside the current users home directory. This means two different users
might receive two different values, when reading the key user/key. In rare situations,
it might be useful for a single user to have different configurations for a single program.
To that end, the dir namespace can be used. It corresponds to files inside the .dir
subdirectory of the current working directory.

Last but not least, we have the spec namespace. It is exclusively used for specifications,
i.e. its keys describe expected properties of the keys in the other namespaces. This
description is realized through meta keys. The verification of this specification is then
done by the validation plugins.

1.1.2 LCDproc

LCDproc is a “client/server suite for controlling a wide variety of LCD devices” [8]. It
consists of three main types of components: a server, one or more drivers and one or
more clients.

Server

The server is the main component of LCDproc. It facilitates the communication between
all other parts. The server is connected to the LCD device(s), which it controls through
drivers. There may be multiple drivers active at once, but all LCD devices will always
display the same information.

The server supports two kinds of information to display:

Screens are displayed by default. The server rotates between the available screens, but
the user can also manually switch screen. A screen can contain different widgets
like text, lines or icons.

2



1.2. Motivation

Menus are accessed via the menu key. When the user opens a menu, they can browse
through the hierarchy and select an item. What happens, when an item is selected,
is determined by the client that created the menu. There are also interactive menu
items like checkboxes and sliders.

Drivers

Drivers are the part of LCDproc that actually interacts with LCD devices. Each driver
is implemented as a shared object loaded at runtime.

Drivers expose a well-defined API, through which the server tells a driver what it should
display. Conversely, the API is also used to report information about the LCD device
back to the server. Some drivers also support user input (e.g. via a built-in keypad),
which can be used to control what is displayed.

Clients

Clients connected to the server provide the actual information that is displayed. The
communication between server and clients happens over TCP, so they may be run on
separate devices. This allows one server connected to a display to show information from
multiple client devices.

There are three core clients inside the LCDproc repository [8]:

lcdproc displays system information like CPU load, memory usage, disk activity or
the current time. Its name comes from the fact that a lot of this information is
taken from the /proc filesystem on Linux.

lcdexec adds a menu to the server. Menu items are either submenus or commands,
which correspond to a shell command that is executed on the client. Commands
can also have parameters, the values of which are passed to the shell command as
environment variables.

lcdvc displays the output of a virtual console. This client is rather esoteric. We only
included it in this thesis as an example of a client with a very small configuration.

1.2 Motivation

LCDproc’s current configuration loading code, is rather unsophisticated and as such,
quite limited in what it can do. This limits the ways in which the configuration can be
designed and used. It also means that using the configuration safely inside one of the
applications requires a lot of, sometimes very repetitive, code. There is also no tooling
for configuration management, so all configurations have to be designed in a way that
makes fully manual editing easy.
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1. Introduction

We just developed a new high-level API for Elektra and wanted to test it in a real-world
project. LCDproc was ideal for this:

• It is not too big, yet it has a varied set of configuration, including some rather rare
things like the hierarchical menu structure in lcdexec. This allows us to test the
more advanced features of the high-level API.

• The fact that almost all configuration values in LCDproc require some sort of
validation, makes it a prime candidate for Elektra’s specifications, on which the
high-level API heavily relies.

• Elektra’s support for many different file formats, will allow users to choose their
preferred format and remove the influence that a fixed format has on configuration
design.

Therefore, we decided to do a case-study and evaluate Elektra’s high-level API by
updating LCDproc.

1.3 Goal of the Thesis
The goal of this thesis will be to evaluate the new high-level API by using it to replace
the current configuration access code of LCDproc.

The main questions we want to answer by updating LCDproc are:

RQ 1 Which guarantees does the high-level API provide to the programmer?

RQ 2 What impact has using the high-level API on the performance of LCDproc?

RQ 3 How does the performance of the new high-level API compare to the existing
low-level API?

1.4 Methodology
To answer RQ 1, we will explain parts of the inner workings of the high-level API. We
will then point out the guarantees made by the API and why they hold.

Answering RQ 2 and RQ 3 requires a more involved methodology. We will create two new
versions of LCDproc: one with the old low-level API and one with the new high-level
API. These two versions and the original version of LCDproc will then be compared
according to a few select metrics:

1. Number of source code lines
A good measure of the complexity of the source code, is the number of lines it
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1.4. Methodology

contains. The less code lines there are, the less effort is required to maintain the
code base. A tool specialized in measuring source code size will be used. This
way, we can distinguish between comments and code lines and get an estimate
calculation for code complexity.

2. Size of the compiled binaries
LCDproc is also used in embedded systems. These systems often only have limited
resources. This is why we will also compare the size of the resulting binary files.

3. Compile time
Since the high-level API relies heavily on a code-generator, we expect that the
compile time will be impacted. To determine the impact of the code-generator call,
as well as compiling the generated code, we will measure the time required by the
compilation process.

4. Runtime performance, specifically start-up time
Another important aspect of performance is of course runtime performance. In the
case of LCDproc, this means the time required to start the application. Since the
whole configuration is loaded at start-up, we will only change that part of the code.
Therefore, measuring this start-up time will be sufficient and save us from having
to devise a series of well-defined client-server interactions.
We will create modified versions of the LCDproc applications that never execute
the main loop. This will allow us to measure the time required for a single
(non-interactive) program call and compare it between versions.

5. Memory usage
Just as important as runtime performance, is memory usage. Especially on embed-
ded systems, system memory might be precious.
We will again use the modified versions, that don’t execute the main loop. We will
then attach a debugger to the application and stop it at representative points in
its execution. Each time we stop the application, we will use the information the
Linux kernel provides in /proc/[pid]/status to determine the current and
peak memory usage.
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CHAPTER 2
The new High-Level API

In this chapter we will give an overview of the new high-level API for Elektra. We will
explain why the new API is needed and what its benefits are. Furthermore, we will
expand on the goals we set ourselves for new API and how we have achieved them. In
the end, this will also give an answer to RQ 1.

2.1 Motivation and Goals
Elektra’s original API is very low-level. It is based on loading parts of the KDB into a
key set. From this key set, individual keys can be retrieved via their full name. Each key
can either contain binary or string data.

While this API is easy enough to understand and use, it was clearly designed for easy use
in Elektra’s extensive plugin system. Using this API within an application can become
cumbersome quite quickly.

Among others, these are some reasons why a new API was created:

• The full name of a key has to be specified each time we want to extract it from a
key set. At the same time, each application should use a unique prefix for its keys
to avoid conflicts. This prefix could be specified once and omitted afterwards.

• The name of a key is given as a string, but strings are prone to typos and cannot
be validated during compile time.

• There is no built-in support for types. Even values of primitive types like int have
to be converted manually.

• Handling of arrays can be complicated. This is demonstrated by the existence of
multiple helper functions for array access.
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2. The new High-Level API

• Error handling is complicated and unwieldy, since almost every function in the API
has multiple error cases.

To mitigate these problems in the original API, we decided that the new API should
achieve certain goals and fulfil certain guarantees.

• The whole API should be type-safe.

• The API shall be based around configuration values, not entire key sets.

• The API shall use a specification containing the expected types and default values
for all known configuration values.

• Getter functions, i.e. the functions used to retrieve a configuration value, should
not be able to fail under normal circumstances.

• Setter functions shall store each configuration value immediately and not rely on a
later call to a commit-type function. This also means that setter functions may fail
and therefore need error handling.

• Error handling shall be mandatory. The API shall take steps to force users to
explicitly handle or ignore errors. Implicitly ignoring errors, e.g. by not checking a
return value, shall not be possible.

2.2 Implementation
This section will give a very brief introduction into the implementation of the new
high-level API. The purpose is to present the reader with the information needed to
understand the later sections and to show, how we achieved our goals for the API. More
detailed explanations of our implementation can be found in the GitHub repository [4]
and on the homepage [5].

The new API consists of three basic parts:

1. The initialization and clean-up functions elektraOpen and elektraClose.

2. Getter and setter functions for each type. Both getters and setters also exist as
array variants, which are used to read/write array elements.

3. Various functions for configuration and error handling. Most notably among these
is elektraErrorReset, used to reset an error variable.

Type safety is achieved by having one getter and setter function for each type. These
functions then convert the value of the requested key to the requested type, but only if
the key has the expected type metadata.

8



2.2. Implementation

To ensure all keys which are part of the specification can be accessed, even if the user
did not explicitly set them, the initialization function elektraOpen is supplied with a
set of default values.

This means that — if the API is used correctly — there is only one case left, where getter
functions may fail: If the requested key is not part of the specification and therefore
does not have a default value. Solving this problem proved too difficult for a pure C API,
so we decided to utilize a code generator.

Like stated above, strings are not a good representation of key names. Function names,
however, are validated by the compiler (or the linker). Thus, by creating one function for
each key in the specification, we can ensure a compile-time error for unexpected keys.

To generate such functions our code generator reads the specification of an application
and produces a static inline function for each configuration value. These functions
then call the plain C API, thereby hiding the strings which identify keys from the user
and removing the potential for typos.

The code generator also makes some advanced features possible. Among these are safely
converting a set of string values into C enum values and reading whole C structs with
a single function call. It even allows us to read recursive structs in a single call.

In contrast, making error handling mandatory was quite simple. All functions that can
return errors check that there is no existing error before doing any work. If an error was
already set beforehand and it was not handled by the user, i.e. elektraErrorReset
has not been called, we call the fatal error handler. This fatal error handler exits the
process immediately. It is also used, if a getter unexpectedly fails because the API was
used incorrectly. By exiting the process, it ensured that no error can be ignored by
accident.

9





CHAPTER 3
LCDproc Implementations

Now that we have introduced the new high-level API, we will show how it can be used.
We will give a brief outline of the three implementations of LCDproc, which will be
evaluated and compared in the next chapter.

3.1 LCDproc 0.5

The original LCDproc implementation (LCDproc 0.5 ) uses configuration files in the INI
format. These files are accessed through a very simple framework.

When one of the LCDproc applications is executed, it calls the initialization function of
this framework. A basic hand-written parser then loads the whole file into a linked list
of sections, each of which consists of a linked list of key-value-pairs.

Later on, when the application needs to access a configuration value, it calls one of the
getter functions. The getter functions iterate over the list of sections until they find the
correct one and then iterate over the key-value pairs in that section to find the requested
one. This results in a theoretical runtime of O(n + m), where n is the number of sections
and m is the number of keys in the requested section.

The framework only supports the types string, int, double, boolean and tristate
(a boolean with a configurable third value). This results in many parts of LCDproc
abusing int or string values in place of proper enums.

The framework also has no support for validation. If there is any kind of restriction —
apart from the type — on a configuration value, the requesting part of LCDproc has to
implement that on its own. This results in a lot of duplicate and very crude validation
code.
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3. LCDproc Implementations

3.2 LCDproc ELL
To allow us to analyse the impact of using the new high-level API compared to the
existing Elektra API, we created a version of LCDproc that uses the existing low-level
API. We call it LCDproc ELL (LCDproc with Elektra’s Low-Level API).

In Elektra, we use a specification to define which configuration keys LCDproc expects
and what values are accepted for these. The specification also defines which plugins
should be used, when loading the configuration files. For each of the four LCDproc
applications LCDd, lcdproc, lcdexec and lcdvc we created such a specification.

Since Elektra’s low-level API doesn’t provide a very nice interface for applications, we
decided to re-use the framework from the original implementation. The hand-written
INI parser was replaced with Elektra.

Additional changes to the source-code were only made as far as required. This also
implies that there is some duplicate validation logic in this implementation, since we did
not remove most of the old validation code. However, because most of these validations
are rather simplistic, so the impact on our benchmarks should be minimal.

The application that has undergone the most changes in this version is lcdexec. The way
it represented its menu structure in INI files is not compatible with Elektra’s hierarchical
KDB. To make the comparison fairer, we decided to use a structure that could be used
with the high-level API with only minor modifications. This meant using flat arrays
cross-referencing each other, instead of hierarchies that more directly mimic the menu
structure.

3.3 LCDproc EHL
The second new implementation LCDproc EHL (LCDproc with Elektra’s High-Level API)
uses as many of the high-level API’s features as possible. This meant slightly modifying
the specification. Nevertheless, this will not significantly impact the benchmarks, because
almost all the modifications solely affect the code-generator, not the running application.

Considering that the high-level API is designed to be used by applications, it would be
redundant to create a framework on top of it. So we discarded the old implementation’s
framework and instead work directly with Elektra. This of course resulted in a lot
more and sometimes much deeper modifications to the code, than in the low-level
implementation. While it might seem, that this makes the comparison unfair, the
opposite is the case. The low-level API is so badly suited for use in applications, that it is
almost certain that developers would insert a layer between it and the actual application.

Using the high-level API and its code-generated features, also allowed us to remove the
code used to parse command-line options and instead rely on Elektra’s inbuilt features
for that.

12



CHAPTER 4
Evaluation

In this chapter we will explore the results of the benchmarks described in section 1.4. We
will compare the implementations described in the previous chapter and thereby answer
RQ 2 and RQ 3.

All benchmarks where done with the following setup:

Processor AMD Ryzen 7 3700X 8-Core Processor
System Memory 32 GB
Operating System Ubuntu 18.04.3 LTS
Elektra Version git commit ca1dfd17
LCDproc 0.5 Version git commit 58738a8f and fe38bb2a
LCDproc ELL Version git commit e5782200 and 2d86b170
LCDproc EHL Version git commit 3e2b9d3f and 314d63d8

The detailed results of our benchmarks and the scripts we used to run them, can be
found online in our benchmark repository [2].

4.1 Number of Source Code Lines

First we will look at the size of the source code in the different versions. To perform this
benchmark, we used scc [3], a tool specialized in measuring the size of source code files.

As shown in Table 4.1, the code of LCDproc is mostly composed of C and C Header
files. Other than that, there are mostly autoconf and automake configuration files
and various pieces of documentation. The only files we are interested in, are the C and
C Header files since we didn’t significantly modify anything else.

We also used scc to calculate a code complexity estimate. This estimate is based on
counting branch and loop statements.
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4. Evaluation

Language Files Lines Blanks Comments Code Complexity
C 171 84006 11760 19388 52858 10840
C Header 165 13182 1647 3315 8220 100
Autoconf 15 3981 687 1312 1982 67
Markdown 8 5255 710 0 4545 0
Perl 6 1800 242 551 1007 70
Shell 6 305 38 37 230 17
CSS 2 39 6 0 33 0
Makefile 2 55 16 7 32 0
Plain Text 2 558 154 0 404 0
License 1 339 53 0 286 0
Patch 1 131 5 0 126 0
YAML 1 10 3 1 6 0
m4 1 1225 63 51 1111 0
Total 381 110886 15384 24662 70840 11094
Estimated Cost to Develop $2,368,033
Estimated Schedule Effort 21.289141 months
Estimated People Required 13.176022

Table 4.1: Source code statistics for LCDproc 0.5 (as produced by scc)

Language Files Lines Blanks Comments Code Complexity
C 171 83853 11799 19193 52861 10760
C Header 165 13131 1649 3252 8230 100
Autoconf 15 3981 687 1312 1982 67
Markdown 9 5546 752 0 4794 0
Shell 7 364 38 37 289 17
Perl 6 1800 242 551 1007 70
CSS 2 39 6 0 33 0
Makefile 2 55 16 7 32 0
Plain Text 2 558 154 0 404 0
License 1 339 53 0 286 0
Patch 1 131 5 0 126 0
Python 1 193 44 1 148 60
YAML 1 10 3 1 6 0
m4 1 1225 63 51 1111 0
Total 384 111225 15511 24405 71309 11074
Estimated Cost to Develop $2,384,497
Estimated Schedule Effort 21.345267 months
Estimated People Required 13.232745

Table 4.2: Source code statistics for LCDproc ELL (as produced by scc)

In Table 4.2 we see, that using Elektra’s low-level API doesn’t affect the source code
size or complexity much. This is mostly because we created a framework on top of
Elektra. The API of this framework is very similar to the configuration parser framework
of LCDproc 0.5, so the code didn’t actually change very much.

In contrast, moving to the high-level API constitutes a much bigger change. This is
reflected in the source code statistics of LCDproc EHL shown in Table 4.3. The code
size went down by 2000 lines, which is about 5%, and complexity decreased significantly.

14



4.2. Size of the Compiled Binaries

Language Files Lines Blanks Comments Code Complexity
C 167 79962 11378 18316 50268 9761
C Header 163 13090 1675 3151 8264 92
Autoconf 16 4037 692 1313 2032 74
Markdown 10 5459 753 0 4706 0
Perl 6 1800 242 551 1007 70
Shell 6 305 38 37 230 17
gitignore 5 36 0 0 36 0
CSS 2 39 6 0 33 0
Makefile 2 55 16 7 32 0
Plain Text 2 558 154 0 404 0
License 1 339 53 0 286 0
Patch 1 131 5 0 126 0
Python 1 249 25 1 223 38
YAML 1 10 3 1 6 0
m4 1 1225 63 51 1111 0
Total 384 107295 15103 23428 68764 10052
Estimated Cost to Develop $2,295,221
Estimated Schedule Effort 21.037983 months
Estimated People Required 12.923349

Table 4.3: Source code statistics for LCDproc EHL (as produced by scc)

While 5% seems like a small change at first, we have to keep in mind that the configuration
loading code is only a small part of LCDproc. Most of the code is dedicated to the
interactions between client and server, as well as between the drivers and the hardware.

The numbers shown in Table 4.3 also include all drivers, even though most have not
been updated. This flaw in the measurements is balanced to some degree, by the fact
that using Elektra’s high-level API requires the use of separate specification files. These
specification files, in the case of LCDproc EHL provided in the INI format, are not
supported by scc and as such do not show up in its output.

For a better overview, we summarized the important differences between LCDproc 0.5
and LCDproc EHL in Table 4.4.

Language Files Lines Code Complexity
C −4 −4044 −2590 −1079
C Header −2 −92 +44 −8
Total −6 −4136 −2546 −1087

Table 4.4: Source code changes between LCDproc 0.5 and LCDproc EHL

4.2 Size of the Compiled Binaries

Next, we will compare the size of the binary files produced by compiling the different
implementations of LCDproc.

15



4. Evaluation

LCDd lcdproc lcdexec lcdvc
0 kB

100 kB

200 kB

300 kB
Binary sizes

LCDproc 0.5
LCDproc ELL
LCDproc EHL

Figure 4.1: Comparison of the binary size of the LCDproc executables

In Figure 4.1, we see the sizes of the executable files of LCDproc. When moving from
LCDproc 0.5 to LCDproc ELL, the binaries get slightly smaller (LCDd remained almost
unchanged). This is to be expected, since the configuration file parsing code was removed
and replaced by an external library (Elektra).

However, LCDproc EHL shows a clear increase in size for all applications except lcdvc.
This can be explained by the different numbers of configuration settings in the applications.
While LCDd has a lot of them (for technical reasons those belonging to drivers contribute
to its count too), lcdvc has a very small number of settings.

From section 2.2, we remember: The code-generator produces accessor methods for
each of these configuration settings. Because of compiler optimizations, many of the
accessor methods generated for the configuration settings, do not affect binary size much.
Nevertheless, using some advanced features, particularly those related to structs, does
have an effect on binary size. This is because those features produce additional code,
which is not optimized as aggressively with standard compiler settings.

All applications other than lcdvc use these advanced features to some extent and
therefore show increases in binary size.

The fact that binary size is mostly unaffected if no advanced features are used, is also
apparent when looking at the sizes of the shared library files of the drivers. In Figure 4.2
we compare all the drivers we chose to update. Everything is as expected (drivers do not
use any of the advanced features), except for the linux_input driver.

The linux_input driver increased in size by 62%. We did not find any reasons, why
this would be the case. As far as we know, this increase is not directly caused by Elektra-
related changes. The likely cause of this increase is some compiler optimization that
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Figure 4.2: Comparison of the binary size of some drivers
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was or was not applied as an indirect result of our changes. We came to this conclusion,
because even parts of the code we did not change at all result in a lot more assembly
code in LCDproc EHL compared to the other versions. LCDproc’s release builds (which
were used for these benchmarks), are optimized for speed, which means the compiler may
sacrifice binary size as a result.

4.3 Compile Time

full build make only make w/o gen
0 s

5 s

10 s

15 s
Compile time

LCDproc 0.5 LCDproc ELL LCDproc EHL

Figure 4.3: Comparison of the compile-time of a full build and after calling make clean.
For LCDproc EHL compile-time excluding the code-generator call is also shown.

Since we are using a code-generator in LCDproc EHL, we were interested in compile
time. Especially, what the impact of running the code-generator would be.

The times were measured with hyperfine [9], a handy tool for running benchmarks.
hyperfine automatically runs a given command multiple times and records the run
time of each execution. It also calculates the mean and standard deviation of the runtimes
as well as some other statistical figures. The actual number of runs varies to make sure
the measurements are accurate, but we set a minimum of 10 runs per command.

We did two tests for all configurations:

• full build: The “full build” runs started with a clean git repository.

• make only: The “make only” ones where executed after make clean and there-
fore did not run autoconf’s configure script.

In Figure 4.3, we see the results of our measurements. A clear increase in compile time
can be observed for LCDproc EHL. By comparing the “full build” with “make only” we
can also see, that only the make step of compiling, but not the autoconf step was
affected by our changes.
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To find out, how much of the increase stems from the call to kdb gen, we repeated
the “make only” test for LCDproc EHL, with a modified make clean that does not
remove the output files of the code-generator. As it turns out, the call to kdb gen is
comparatively cheap, it only takes around 0.50 s. The other 3.50 s increase, is the time it
takes to compile the generated C Files.

4.4 Start-up Time
While the compile time is interesting to developers of LCDproc, the more important figure
is the run time performance. Since using Elektra only affects the start-up performance
of LCDproc, we focused our benchmarks on this part. We again used hyperfine to
measure the execution times of our modified binaries (see section 1.4). In addition to
modifying the executables, we also had to add an artificial delay to the execution of LCDd
and lcdexec. Without the delay, hyperfine would not have been able to produce
reliable results.

To get an idea how configuration size affects the run time, we tested all four applications
with three sizes of configuration:

• A minimal configuration containing just enough settings, that the application can
start. For the server this mean setting a single driver, for lcdexec creating a menu
with a single command. lcdproc and lcdvc do not require any configuration.
They were run purely with default values.

• A small configuration with a handful of settings.

• A big configuration. The big configuration was taken from the example config-
uration files included in the LCDproc 0.5 source code and adapted for the other
versions.

In addition, we also ran LCDd and lcdproc in their minimal configurations with
additional command line arguments. Since LCDproc EHL uses Elektra’s command
line parsing functionality and the other versions use the standard getopts, we were
interested in the impact of this change. The other two clients do not support a lot of
command line options, and the ones that are supported are difficult to use in benchmarks,
so we did not test them.

The results of all these runs are shown in Figure 4.4, grouped by application. We have
adjusted the axes for LCDd and lcdexec to account for the artificial delays. The error
bars show the standard deviation, of each benchmark.

We found that the impact of using Elektra is quite different across the LCDproc applica-
tions.

The server LCDd has a very short start-up time, so the effects of using Elektra are most
obvious there. When switching from LCDproc 0.5 to LCDproc ELL, we see a 23 ms
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Figure 4.4: Comparison of start-up times. The times of LCDd and lcdexec are artificially
increased via sleep, because they could not be reliably measured otherwise.
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increase in run time, except for the big configuration, where the increase is 35 ms. The
big configuration of LCDd is much bigger than the small one, so the bigger difference
makes a lot of sense, the program has to process a lot more keys.

However, in LCDproc ELL, the difference between small and big configurations is much
bigger than in LCDproc 0.5. This is a clear disadvantage of using Elektra. Elektra always
fully processes all keys, while the less sophisticated framework in LCDproc 0.5 simply
reads the whole configuration into a linked list and only processes settings, when the
application actually loads them.

The move from LCDproc ELL to LCDproc EHL further increases the server start-up
time by 10 ms to 15 ms. LCDproc ELL was executed in the simplest possible setup, this
means that none of Elektra’s validation plugins where configured and therefore did not
contribute to the execution time. Therefore, we expected the minor increase in run-time.

For lcdvc it seems the impact is universally the same, about 7 ms, regardless of whether
we use the low-level or high-level API and of the configuration size. lcdvc uses much
fewer plugins and has much fewer configuration settings than LCDd. It seems lcdvc’s
specification is so simple that the overhead of running the plugins is balanced out by the
framework on top of Elektra used in LCDproc ELL.

In lcdproc, we see the same 7 ms difference between LCDproc 0.5 and LCDproc ELL.
This time however, using the high-level API adds another 7 ms to the run time. A part
of this likely comes from lcdproc’s use of the high-level API’s struct-reading feature.
The other part is that lcdproc has more configuration settings and therefore, although
it does not use more plugins than lcdvc, the plugins have to process more keys.

Lastly, we take a look at lcdexec. Its results raise a lot of questions. The big
configuration in LCDproc ELL is quicker than the small one, a similar phenomenon
occurs for the minimal and small configurations in LCDproc EHL and the standard
deviation of LCDproc ELL’s minimal and small runs is unusually high. It is likely that
these results are not very reliable, probably because of lcdexec’s very short execution
time (less than 2 ms in LCDproc 0.5).

The only thing we are sure is a reliable result here, is that using Elektra’s high-level API
creates an overhead that is particularly obvious in big configurations. lcdexec uses
recursive structs which are read automatically via the high-level API. This mechanism
is very powerful, but has certain limitations compared to manually implementing the
recursive reading. The relevant limitation in this case is that lcdexec needs a unique
ID for each of its menus, commands and parameters. The high-level API has no way
to provide such an ID, so we have to do some post-processing in LCDproc EHL that
is not required in the other versions. This additional step is likely, why we see another
overhead proportional to the configuration size in addition to the one cause by Elektra’s
handling of keys explained above.

Both LCDd and lcdproc also demonstrate, that Elektra’s command-line parsing has no
significant impact on runtime performance.
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4.5 Memory Usage

Just as adding Elektra will affect the start-up time of LCDproc, it will affect its memory
usage. Properly measuring the memory usage of a program over time is quite hard to
do. There are many tools that can track malloc calls, but Elektra’s cache directly uses
mmap. These mmap calls would not be counted by most tools. Some tools can also track
the low-level mmap and brk calls instead of malloc. However, that is also not a good
solution, since it will produce unrealistically high results. The results will be much higher
than expected, because they measure virtual address space instead of actual physical
memory usage.

To get an idea of Elektra’s impact anyway, we decided on a very simple solution. We
attached a debugger to the applications and stopped them at certain location. Each
time an application was stopped, we recorded the VmRSS and VmHWM values reported by
the Linux kernel. VmRSS and VmHWM are the current and peak physical memory usage
respectively.

A pseudo-code description of the points at which all applications where stopped is shown
in Listing 4.1.

We graphed the resulting values in Figure 4.5. The graphs only show a rough overview of
memory usage over time, obtained by putting peak values in between current values, if
they exceeded the last peak. The interesting parts of the diagrams are the rough outline
of the graphs, their peaks as well as their end points. Peak values are interesting, because
they show how much memory is needed to properly run LCDproc and the rough outlines
show us, when this peak is reached. The end points, meanwhile, give an estimate of
how much memory the application occupies continuously over its lifetime (if it were to
actually execute the main loop).

We found that all of LCDproc’s applications have a base memory usage of about 2 MB in
LCDproc 0.5. In LCDproc ELL this is increased to around 4.50 MB. In LCDproc EHL
the base requirement differs between applications, LCDd and lcdproc need 6.50 MB,
while lcdexec and lcdvc only need 6 MB and 5 MB respectively.

The impact of bigger configurations can be observed in LCDd. All three versions show an in-
crease of 2 MB when switching from the small configuration to the big one. LCDproc ELL
also has an increase of 500 kB when switching from minimal to small, which is not present
in LCDproc EHL. This is because LCDproc EHL loads the specification and creates keys
with default values for all drivers, regardless of whether they are in use or not. This is a
known limitation of Elektra’s specifications.

Because we did not configure the specification in LCDproc ELL, no keys with default
values are created and no memory usage impact is observed. This also accounts for some
of the difference between LCDproc ELL and LCDproc EHL.

All applications have their peak memory usage while processing the configuration. This
was expected, since validating, transforming and otherwise processing the configuration
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Figure 4.5: Comparison of the memory usage of the LCDproc applications using configu-
rations of varying size.
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Listing 4.1: Pseudo-code description of points at which LCDproc applications where
stopped to record memory usage.

int main (int argc, char ** argv) {
__record_memory_usage ();
/* ... */
__record_memory_usage ();
loadConfiguration ();
/* ... */
__record_memory_usage ();
mainloop ();
cleanup ();

}

will require additional memory that can be discarded once we enter the main loop.
The peak is more or less pronounced depending on the implementation, because all
implementations handle their configuration access differently.

LCDproc 0.5’s configuration data structure has very little overhead, so its peak will never
be very high. Elektra’s data structures do have quite a lot of overhead, so we clearly
see, when some of it is discarded. This is most noticeable in lcdvc, which discards all
Elektra structures before entering the main loop. The others only discard them right at
the very end of the program’s lifetime, which is not recorded in our diagrams.

Lastly, we can use the results of LCDd and lcdproc to see, that Elektra’s command-line
parsing has no substantial effect on memory usage as well.
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CHAPTER 5
Related and Future Work

5.1 Related Work

5.1.1 Specification-based Code-generation

In “A Model-Driven Method for Fast Building Consistent Web Services from OpenAPI-
Compatible Models” [13] Sferruzza et al. show an approach for validating the consistency
of web services specifications. To show how this can be used in practical applications,
they also implemented a prototype code generator that creates a fully functional web
services from an extended OpenAPI specification. This code-generator is significantly
more advanced than those commonly used in the industry [1], which only create skeleton
code. The resulting code generator is in some sense similar to the one implemented for
Elektra. Both of them do generate completely standalone code, which can be used by
other parts of the program, without the need to fill in a skeleton first.

The paper “From Open API to Semantic Specifications and Code Adapters” [12] also
focuses on generating code from an OpenAPI specification. However, unlike Sferruzza et
al. the paper’s goal is not to produce a fully functional web-service, but to create a more
sophisticated semantic specification from the purely syntactic OpenAPI specification. In
addition, their process is also just semi-automatic, in contrast to the fully automatic
generator implemented by Sferruzza et al.. The authors then use the generated semantic
specification together with the original syntactic OpenAPI specification to generate
adapter code for the various requests the described web service accepts.

In his book “Code Generation in Action” [7] Jack Herrington gives a broad overview
of different types of code generation. After giving a basic introduction into what
code generators are and how they work, examples for many code generators are given.
This ranges from simple things like generating code describing user interfaces and
documentation to very complex topics like generating web service layers and even
business logic. While this work clearly does not focus on research, it shows what can be
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done by code generation and provides a nice introduction into how one might go about
creating new code generators.

5.1.2 Refactoring

The book “Refactoring: improving the design of existing code” [6] is a very often cited
and very extensive guide to refactoring. The author’s goal is to show how refactoring can
be done correctly and efficiently. In addition, the book also covers, why refactoring is
important and what the benefits of regular refactoring are. A comprehensive list of signs
of bad code as well as better ways of organizing code and data are presented as well.

5.2 Future Work

While we think that the creation of the high-level API makes Elektra fully production-
ready, we cannot deny that there is still a lot that can be improved.

Firstly, not everyone likes programming in C and especially GUI applications are unlikely
to be written in C. Elektra’s low-level API already has bindings in many other languages
including C++, Java, Python, Go and Rust. To allow developers using these programming
languages to enjoy the benefits of the high-level API, we will need to extend those bindings
to include the high-level API. In some cases, it might also make more sense to create
new high-level APIs based on the existing low-level bindings. This way, we would not be
limited by the underlying C high-level API.

In addition to these bindings, the code-generator should be extended to support different
programming languages. The likely candidate for the first such extension is C++. It is
directly compatible with C, which makes creating a high-level API binding easy, and its
support of namespaces, classes and object-oriented programming in general would allow
a much nicer generated API. For example, a class could be generated for each key of the
specification. The namespace and name of the class would reflect the key name and the
methods of the class could be used to get, set and otherwise manipulate the key value.

There are also many ways, in which Elektra’s specification language can be enhanced. For
one, the specload plugin, which is intended to allow users to safely change the specifi-
cation, is still very limited. At the moment it mostly allows changing the description
and other comment-style meta keys. For instance, it may be allowed to restrict the type
of a key from long to short in many cases. However, there are also cases where this
is dangerous (e.g. when the application also writes back to the KDB), which is why it
is not allowed yet. We will have to put additional thought into which changes are safe
under which circumstances. Most likely, there will have to be a way to allow and disallow
such changes in the specification by hand.

The specification language could also be made more powerful. One idea for doing this is
the introduction of so-called “contextual values” [11]. These are values, that are taken
from the environment (or context) in which an application is executed. For example this
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could be the current username, the hostname of the current machine, or the value of
another key in the KDB. Crucially, these values are then used as part of key names and
not as the value of some key. The creation of such a system was already attempted with
the old Python-based code-generator [11], but this was based on a rather complicated
template-based C++ setup and therefore could not be used from C.

The spec plugin is used to copy the metadata of the specification keys onto the keys
containing the actual values, so that validation plugins will validate them. This plugin
has some known limitations that should be improved upon.

At the moment, the plugin does support what is called “globbing”. Through globbing, a
single template key can be used as the specification for a whole set of keys. Currently,
the only fully supported way of globbing is array-based. This means, that a template for
all array elements of an array is used. Sometimes, however, using arrays is cumbersome.
For instance, in lcdexec all menus are contained in a single array and referenced by
their index. It would make the configuration much more user-friendly, if menus could
be referenced via a name instead of an index. This is sadly not possible right now and
might not ever be possible, with the current specification setup.

Lastly, we already knew that the spec plugin has some performance problems. Many of
these are inherent to the way the plugin works, but a profiler run on LCDd revealed, that
there are still possibilities for optimization Elektra’s core. In all of Elektra, it is very
common that keys are allocated temporarily. Our results (see Figure 5.1), show that about
40% of the start-up time of LCDd are spent in the key-creation function keyNew. This
function in turn spends most of its time setting the key name via elektraKeySetName,
a seemingly simple function that is also called from many other places. Therefore, this
function is a prime candidate for future optimizations.
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processSpecKey
69.69%
462×

elektraKeySetName
42.23%
62483×

keyNew
40.32%
61358×

keyGetMeta
14.75%
28698×

kdbGet
85.44%

0×

keyVNew
39.50%
43106×

keyVInit
38.79%
43106×

Figure 5.1: Extract of the call-tree produced by running LCDd with profiler callgrind.
The full tree can be found in our benchmark repository [2]. The percent values indicate
the fraction of processing time that was spent in the function, while the absolute values
denote the number of times the function was executed. Not all code paths are shown, so
sometimes children may be called more often than all their (shown) parents have been.
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CHAPTER 6
Conclusion

We started with a version of LCDproc that used a custom, old and unsophisticated
configuration loading framework. Looking at the implementation, we also expected it to
be slow — at least that is what the theoretical runtime would suggest —, this turned out
to not be true. The implementation of LCDproc 0.5 is faster, both in terms of start-up
and of compile time, and more memory efficient. This would suggest that using Elektra
instead, would not be a good decision.

However, we feel that the benefits of Elektra outweigh the performance penalties, which
in the worst case were still substantially below 100 ms. We gained the safety and ease of
use of a robust specification that replaces many lines of code. Code that is very hard to
test properly. Using Elektra also enables us to use all of its powerful tooling and change
the file format of our configurations whenever we want, without any changes to the code.

The 2 MB to 5 MB memory overhead of Elektra, is a big relative increase — +100% and
more — but should be manageable for any modern system. Binary size also increased
by less than 100 kB in some cases, but code size, which in our opinion is much more
important nowadays, went down more than 2000 lines. Not only that, but the readability
of the remaining code is also greatly improved compared to the version without Elektra.

Compared to the low-level API, the high-level API only has a minor overhead. At the
same time it is, however, a lot easier to use. There is less potential for error and less
manual setup is required.

The high-level API also provides very helpful guarantees. Most important among these
are the infallible getters and the compile-time checking of key names.

In conclusion, we think that its new high-level API makes using Elektra much easier and
at the same time safer as well. Elektra itself provides many benefits compared to simpler
custom configuration loading frameworks, but its performance could still be improved.
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List of Terms

API v, 1, 3–5, 7–9, 11, 12, 14, 15, 21, 26, 29, see Application Programming Interface

Application Programming Interface In the context of this thesis: The set of func-
tions exposed by some part of a program or library that other parts or different
programs and libraries use to interact with it.

Cascading key A key with no explicit namespace. Its namespace is implied by the
context in which it is used and resolved during the lookup in a key set. 2

Elektra “Elektra serves as a universal and secure framework to access configuration
parameters in a global, hierarchical key database.” [4] v, 1, 2, 4, 7, 12, 14–16, 19,
21, 22, 24, 26, 27, 29, 37, 38

KDB 1, 2, 7, 12, 26, 27, 37, 38, see Key database

Key The smallest unit in Elektra. It is short for key-value pair and represents a single
configuration value. 1, 2, 7–9, 21, 22, 26, 27, 37, 38

Key database The hierarchical database, distributed across a number of different files
across a system, in which Elektra stores all configuration values.

Key name The name of a key that uniquely identifies it inside the KDB. 1, 2, 26, 27,
29, 38

Key set An ordered collection of keys. Most of the time this represents a part of the
KDB. 2, 7, 8, 37

Key value The actual configuration values stored in a key in the KDB. 1, 26

LCDproc “LCDproc is a client/server suite including drivers for all kinds of nifty LCD
devices. The server works with different display sizes and supports several serial
devices. [...] Various clients are available that display things like CPU load, system
load, memory usage, uptime, and a lot more.” [8] v, 2–5, 11–13, 15, 16, 18, 19, 22,
29, 38
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LCDproc 0.5 The original LCDproc version using a hand-written configuration parser
instead of Elektra. 11, 14–16, 19, 21, 22, 24, 29

LCDproc EHL Our new implementation of LCDproc that uses Elektra’s new high-level
API. 12, 14–16, 18, 19, 21, 22

LCDproc ELL Our test implementation of LCDproc that uses Elektra’s low-level API.
12, 16, 19, 21, 22

Meta key A key that does not exist on its own inside the KDB, but instead is attached
to another key and describes additional properties of this other key. The key name
of a meta key uniquely identifies it among all meta keys of the key it is attached to.
1, 2, 26, 38

Meta value The value of a meta key. 1

Mountpoint Apart from the fixed set of default files, additional files can be used to
store a part of the KDB. All keys in such a file are below a single key. This key is
called a mountpoint. 1

Storage plugin A type of plugin for Elektra that is used to load and store configuration
files. 2

Type safety Type safety is a measure describing whether a language or specification
can detect type errors. A language or specification is said to be (fully) type-safe, if
it detects all possible errors. In the context of Elektra this applies to the relation
between the type of a key and native C types. A type error is caused by the attempt
to convert a key to an incompatible native C type. 8

Type-safe 8, see Type safety

Validation plugin A type of plugin for Elektra that is used to do some kind of validation
on the keys in the KDB. This can happen either after loading or before storing a
configuration file. What kind of and how the validation should be done is defined
via meta keys. 2, 21
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