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ABSTRACT - Providing two different search algorithms for the
same data leads to a choice and a possible lose of performance. Es-
pecially when the two search algorithms are efficient in different sce-
narios. The dynamic binary search works in logarithmic time and the
static order preserving minimal perfect hash map (OPMPHM) has
constant search time but must be constructed in liner time. Every
data alteration leads to a complete reconstruction of the static OPM-
PHM. This makes the data alterations to the crucial point for the
performance and the choice of search algorithm. The proposed hy-
brid search combines both search algorithms with a modified branch
predictor. The modified branch predictor speculates about the data
alterations and determines what search algorithm would be faster.
The results made with random cases had shown that the hybrid search
is except for small data sizes (elements < 600) almost always faster
compared to the standalone binary search. The performance increase
strongly depended on the measured hardware. In the random cases
where the hybrid search is faster, on average ≈ 8.53% to ≈ 20.92% of
time was saved.
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1 Introduction

A hybrid is differently composed. One component of the hybrid search is a
dynamic search algorithm. The dynamic search algorithm efficiently handles
data that is often altered. The other component of the hybrid search is a static
search algorithm. The static search algorithm is optimal for data that is seldom
altered.

The dynamic search algorithm is a binary search that operates on always
sorted elements. The static search algorithm is an order preserving minimal
perfect hash map (OPMPHM). The OPMPHM is a static hash map algorithm
thus there is no single element insertion and deletion operation. The OPMPHM
is build for a set of elements and when only one element is removed or added
the OPMPHM must be build again.

The hybrid search combines both search algorithms by using a modified
branch predictor. The CPU uses a branch predictor to speculate at branches
about the execution of the next program statement. To keep the execution
pipeline also at branches always filled. The hybrid search speculates about
data alterations with a modified branch predictor. This speculation is used to
determine if the dynamic or static search algorithm would be faster.

1.1 Goal

Elektra1 is a configuration framework and has the search operation ksLookup

(...), that already implements the dynamic search algorithm. The goal of
this thesis is the extension of Elektra’s search operation with an OPMPHM,
but without any change of the Elektra API. Providing two search algorithms
will inevitably lead to a choice and picking the wrong search algorithm could
decrease the performance of Elektra’s search operation. To transfer the choice
away from Elektra’s API and to increase the performance of Elektra’s search
operation the hybrid search is developed.

Before developing the hybrid search the OPMPHM algorithm must be im-
plemented in Elektra. The OPMPHM build process works in iterations, each
iteration is a random search for an OPMPHM. The iterations are repeated until
an OPMPHM is found. The number of iterations until an OPMPHM is found
depends on two constants. The OPMPHM build relies also on sub components
such as hash function and pseudo random function. There is less known about
good performing values for those constants and there is no knowledge how the
OPMPHM build performs with those sub components. Since the OPMPHM is
static and the OPMPHM build searches randomly it is important for the overall
hybrid search performance that the OPMPHM build performs well. Therefore

1libelektra.org
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the first research question is solely concerned with the runtime of the OPMPHM
build:

RQ (i) Is the runtime of the OPMPHM build minimal?

After the OPMPHM algorithm is implemented in Elektra it is compared
with a common hash map algorithm:

RQ (ii) How is the time performance of Elektra’s OPMPHM build in compar-
ison to the hsearch2 build?

The hybrid search is evaluated in the context of the goal of this thesis and
therefore compared with Elektra’s standalone binary search. Although configu-
rations tend do not have much alterations the hybrid search is evaluated harder
with the research question:

RQ (iii) How much superior and how much inferior is the hybrid search time
compared to the standalone binary search time in random cases?

2 Background

2.1 Hash Functions

Hash functions take arbitrary input of arbitrary length and calculate a fixed
length output influenced by the input. A good hash function gives on the
slightest change of the input a different output. Hash functions can have colli-
sions, meaning that there are two different inputs leading to the same output.
Collisions can not be avoided in general, but good hash functions rarely have
collisions.

A seeded hash function is an extension of a hash function that additionally
takes (beside the arbitrary input of arbitrary length also) a seed as input. A seed
is a fixed sized random data. The output of a seeded hash function is influenced
by both inputs. One seeded hash function in combination with multiple and
different seeds represents multiple and different hash functions.

2.2 Hash Maps

A hash map is a data structure, that supports constant time search opera-
tions. Each element has a name and a value, the element’s name is usually a
string and the element’s value is arbitrary. A search operation is a procedure
that takes as input an arbitrary element’s name and returns the whole element
or not found. Search operations are used to access the element’s value, only
by knowing the element’s name. Hash maps pass the element’s name to hash
functions and use the output for arithmetic calculations, to find the element.
The time complexity of a hash function used in a hash map is constant, be-
cause the complexity calculation considers only the number of elements and not
their length. Thus the hash map’s search operation has constant time. Unlike
a binary search algorithm where the complexity grows with the number of ele-
ments. Hash maps support also insertion and deletion operations. A search for

2Standard C library function http://linux.die.net/man/3/hsearch
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an element can only be successful if the element was inserted in the hash map
before.

The essence of a hash map is its mapping scheme that defines how the
arithmetic calculation is done. The mapping scheme includes one or more hash
functions and describes how an element’s name is mapped to the element. Hash
maps use buckets, that contain the elements inserted in the hash map. Let m
be the predefined number of buckets. A mapping scheme would be:

hashFunction(name) mod m

Where mod is the modulo operation, that limits the output of the hash function
to the buckets {0, . . . ,m − 1}. When the number of buckets m changes, all
elements that were inserted in the hash map need to be reinserted. This rein-
sertion is needed to make sure that all elements are in the right buckets after
the number of buckets changed. The reinsertion of a set of elements previously
in the hash map is known as rebuild . A build is the creation of a hash map
over a set of elements. During the build a empty hash map is created and each
element inserted into it. The number of buckets (m) is not fixed, it depends on
the number of elements in the hash map (n) and the desired load of the hash
map. The hash map load α is defined as α = n

m . For example a load of 0.25
with 50 elements would lead to 200 buckets. When the load is over 1 there must
be a bucket that contains more than one element, this destroys the property
of constant time search operations, because an extra search in the bucket is
needed. As long as the maximum number of elements is known, hash maps are
suitable for data that changes often, because expensive rebuilds can be avoided.

2.3 The Order Preserving Minimal Perfect Hash Map

The Order Preserving Minimal Perfect Hash Map, referred to as OPMPHM ,
is a hash map satisfying all of the following properties:

Order Preserving Each element to index with the hash map has a predefined
order, denoted as order(s), s ∈ S, where S is the set of element to in-
dex with the hash map. The mapping scheme of the hash map can be
influenced to represent this predefined order. In the context of a common
hash map the order of the influenceable mapping scheme defines to which
bucket each element belongs.

Minimal The resulting hash map’s size is O(n), where n is the number of
elements in the hash map. Basically the common hash map is minimal
but the load of a minimal hash map is maximized.

Perfect The search operation always takes O(1) time.

The static and randomized OPMPHM algorithm used in this thesis is based on
the work of Botelho[2] and Czech et al.[4]. There is no single element insertion
and single element deletion operation, this makes the algorithm static. The
OPMPHM is constructed for a specified set of elements (S), to represent an
index over the set of elements (S), where each element must have an order.
This construction is the OPMPHM build. When the specific set related to the
build OPMPHM or a single order of an element changes, the OPMPHM must be
build again. This separates the OPMPHM for common hash maps that support
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single element insertion and single element deletion operations. The OPMPHM
algorithm is a Las Vegas type. Randomized Las Vegas algorithms give always
a correct result but the runtime is random. Therefore the OPMPHM build
runtime is random.

2.4 Elektra

Elektra3 is a library that implements access to a configuration storage. Configu-
rations contain user preferences or other application settings and a configuration
storage makes configuration permanent. The configurations are represented as
keysets, a keyset is a sets of keys and a key consists of a name and a value.
The key name is a sting and the key value is arbitrary data. Each key in a
keyset has a unique name and the key names organize the keys in a hierarchy.[8]

This example shows a keyset and its hierarchy tree:

(a) Key Names

/a/b

/a/c

/b

/c

/c/b

/c/d

(b) Hierarchy Tree

a

b c

b c

b d

In the hierarchy tree all vertices except the root have names (strings). In this
example hierarchy tree every thick vertex represents a key, not all vertices must
be keys (/a is not a key), but the leaves have to be keys. Every vertex except
the root has a parent and vertices can have children. All the children’s name
of a parent must be unique. The key names are constructed from all possible
paths from the root to each key vertex. In all possible paths the vertices are
substituted by there name and the edges by a ”/”. The level of a vertex is the
number of edges minus 1 on the path to the root. In this example vertex a has
level 0.

The keys are stored in an array sorted by there name in the keyset, thus
the binary search takes only O(log2(n)) time, where n is the number of keys
in the keyset. The OPMPHM just extends the keyset, because the OPMPHM
represents an index and requires no keys reorganization.

2.5 Branch Prediction

A dynamic branch predictor predicts with the knowledge of previous binary
events the outcome of a single binary event. The CPU’s dynamic branch predic-
tor distincts the branching instructions of a program by there addresses. More
sophisticated dynamic branch prediction algorithms are applicable with this ad-
ditional information. However on the level of a portable software library it is
impossible to distinct between the API function invocations. Thus in Elektra’s

3libelektra.org
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search operation ksLookup (...) it is indeterminable which function invoca-
tion of the program invoked the function. This forces the usage of a simpler
dynamic branch prediction algorithm.

The hybrid search uses the dynamic branch prediction algorithm from Yeh
and Patt[10], where the predicted events where modified. The dynamic branch
predictor from Yeh and Patt[10] keeps track of the previous events in a history
and analyzes patterns in the history with a prediction automata. The dynamic
branch predictor consists of tree main components: prediction automata, history
register and pattern history table.

Yeh and Patt[10] described various prediction automatas, this one performs
best:

Figure 2: The Prediction Automata

s0/0start s1/0 s2/1 s3/1

0

1

0

1

0

1

1

0

The prediction automata has four states and s0 is the starting state. The binary
events on the arrows are used to analyze the last outcome and the binary events
in the states are used to predict the new outcome. The prediction is pattern
based but for this example assume there is only a prediction automata. On
the first prediction the automata predicts 0. At the second prediction the last
outcome was 1 and the automata analyzes this with a transfer to state s1.
Now the prediction automata predicts again 0. On the third prediction the last
outcome was again 1 and the automata analyzes this with a transfer to state
s2. Now the prediction automata predicts 1.

To establish a pattern-based analysis the dynamic branch predictor uses a
history register and a pattern history table. The history register is a fixed size
sequence of 0 or 1 and keeps track of the last events. For example the following
history 0101 with length 4 represents the alternating events of 0 and 1. For each
possible value of the history register there is an entry in the pattern history table.
An entry of the pattern history table stores a state of the prediction automata.

The prediction starts with a pre-prediction for the actual history (history
register value). So when the predictor sees the next time the same history it
knows what to predict. The pre-prediction step uses the history register value
to extract out of the pattern history table the prediction automata’s state. The
prediction automata’s state is updated with the new state, resulting from the old
state and the last outcome. After the pre-prediction the history (history register
value) is updated by shifting it with the last outcome to the left. The prediction
uses the new history (history register value) to extract from the pattern history
table another pre predicted state and the state determines the prediction.

This example shows a prediction with a 0 as the last outcome:
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history register 011(3)← 110(6)

state state
0 s0/0 4 s3/1
1 s1/0 5 s1/0
2 s1/0 6 s2/1
3 s3/1← s2/1 7 s0/0

On the left is the history register (with length 3) and on the right is the pattern
history table. The ← represents a value update. The pre-prediction updates
the third entry of the pattern history table with the last outcome (0) and the
previous state s3. The history register is updated with the last outcome (0) and
the sixth entry of the pattern history table determines the new prediction 1.

The space complexity of this dynamic branch predictor is exponential in the
history register length, since for every history register value an entry in the
pattern history table is needed. Each entry needs two bits to store the four
states of the prediction automata.

3 Theory

3.1 Preliminaries

An r-uniform r-partite hypergraph for r > 1 is a tuple Gr = (V,E),
where V = V1 ∪ . . . ∪ Vr are the vertices, separated in r components and
E = {(v1, . . . , vr) : v1 ∈ V1, . . . , vr ∈ Vr} are the edges, connecting r ver-
tices from separate components. Note that with r = 2 the r-uniform r-partite
hypergraph has two components and each edge connects two vertices in the sep-
arate components. This corresponds to a bipartite graph.

Czech at al.[5] gives a definition of an acyclic r-uniform r-partite hypergraph:
“An r-uniform r-partite hypergraph is acyclic if and only if some sequence of
repeated deletion of edges containing vertices of degree 1 yields a graph with no
edges.”

3.2 The OPMPHM Algorithm

The core concept of this OPMPHM algorithm is the randomized search for
acyclic r-uniform r-partite hypergraph Gr with |E| = n and |V | = cn. The
hypergraph is constructed for a given set of elements S with |S| = n. The
constant c is the vertices factor that influences the number of vertices in the
randomized r-uniform r-partite hypergraph. Each component Vi 1 ≤ i ≤ r of
V has the same number of vertices dcn/re.

The r-uniform r-partite hypergraph construction relies on r seeded hash
functions f1, . . . , fr. Each seeded hash function is defined as fi : S → Vi for
1 ≤ i ≤ r and maps each element s ∈ S to r vertices each one in a separate
component of Gr. Each element of s ∈ S in combination with all seeded hash
functions f1, . . . , fr represents an edge e ∈ E of Gr.

Should the constructed r-uniform r-partite hypergraph have cycles, new
seeded hash functions f1, . . . , fr will be chosen until the r-uniform r-partite
hypergraph is acyclic, this procedure is described by Botelho[2] as the mapping
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step of the RAM algorithm. This approach makes this OPMPHM algorithm a
randomized algorithm of the Las Vegas type.

After the mapping step when an acyclic r-uniform r-partite hypergraph is
found, comes the assignment step. The assignment step assigns for every ver-
tex an integer, stored in the function g : V → {0, 1, . . . , n − 1}. During the
assignment every edge’s (representing an element) vertices e = (v1, . . . , vr), v1 ∈
V1, . . . , vr ∈ Vr are assigned to sum up to the predefined order of the element
order(s):

order(s) = (g(v1) + g(v2) + · · ·+ g(vr)) mod n

The search for an element uses the seeded hash functions fi(s) = vi for 1 ≤ i ≤ r
to calculate the vertices. The assigned values of those vertices are then used
to calculate the predefined order of the element and conclude the search. The
resulting mapping scheme is:

(g(f1(s)) + g(f2(s)) + · · ·+ g(fr(s))) mod n

The following example shows an OPMPHM of four elements and the corre-
sponding r-uniform r-partite hypergraph with r = 2:

(a) Elements

S Name order(si) f1 f2
s1 bob 0 v2 v5
s2 joe 1 v3 v6
s3 ava 2 v1 v5
s4 mia 3 v1 v4

(b) G2 = ({v1, v2, v3} ∪ {v4, v5, v6}, E)

v1 v2 v3

v4 v5 v6

bob joe
ava

mia

(c) g()

v1 v2 v3 v4 v5 v6
g 2 0 3 1 0 2

A search for joe first calculates the vertices with the seeded hash functions
(g(v3) + g(v6)) mod 4, than g() gives the vertices integer values (3 + 2) mod 4
and the final result is the predefined order 5 mod 4 = 1.

Botelho[2] gives a minimum c value for finding acyclic r-uniform r-partite hy-
pergraph, to ensure that there are only O(1) r-uniform r-partite hypergraphs to
construct. This minimum c value depends on r, the following function plot of
c(r) shows the values:
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In this plot the x-axis is the number of components of the r-uniform r-partite
hypergraph and the y-axis is the minimal c value to ensure a constant number
of r-uniform r-partite hypergraph constructions.

The c value directly influences the space needed to store the OPMPHM,
since the g() function must be saved and |V | = cn. This plot of c(r) shows that
the space needed to store the OPMPHM is minimal at r = 3, since c(3) ≈ 1.23.

The assignment of the vertices is known as the generalized perfect assignment
problem. Czech et al.[5] described the generalized perfect assignment prob-
lem : Given a r-uniform r-partite hypergraph where |E| = n, finding a function
g : V → {0, 1, . . . , n−1} such that the function h : E → {0, 1, . . . , n−1} defined
as:

h(e) = (g(v1) + g(v2) + · · ·+ g(vr)) mod n

is a bijection, where e = (v1, . . . , vr) and mod is the modulo operation. Only
acyclic r-uniform r-partite hypergraphs assure a linear time complexity of the
assignment. Because only for acyclic r-uniform r-partite hypergraphs it is guar-
anteed to have a linear time solution to the generalized perfect assignment prob-
lem.[5].

The assignment step is a generalized version of the assignment step described
from Czech et al.[4] for bipartite graphs. The sequence of edges during the as-
signment cannot be arbitrary, since an arbitrary sequence could lead to the
case that there is no assignable vertex for an edge. This can be the case when
other edges assign the vertices before the edge is assigned. The assignment
procedure uses the sequence of repeated deletion of edges, given by the acyclic
r-uniform r-partite hypergraph definition. Since the r-uniform r-partite hyper-
graph is acyclic at this stage, there exists a sequence of repeated deletion of
edges containing vertices of degree 1. The assignment step uses the reversed
sequence of repeated deletion, thus it is ensured that every edge that will be
assigned contains vertices of degree 1. The degree 1 vertices are not yet involved
in other assignments of edges.
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3.3 Related Work

Botelho[1] proposes a MPHM algorithm that constructs a MPHM through ran-
dom cyclic undirected graphs with no self loops and multiple edges. The al-
gorithm is not order preserving the order of the elements is not influenceable.
The elements are mapped by the MPHM to a fixed number of buckets, through
the missing order preserving property it possible that buckets stay empty. The
algorithm consists of the steps: mapping, ordering and searching. The mapping
step constructs with two hash functions the random graph and ensures by re-
peating that it contains no self loops and multiple edges. One element with the
two hash functions represents an edge in the random graph. The ordering step
divides the random graph in a cyclic and acyclic sub graph. The searching step
first assigns the cyclic sub graph. This is done by traversing the cyclic sub graph
in a breadth-first manner. The second step of the search is the assignment of
the acyclic sub graph. This is done by traversing the acyclic sub graph in a
deep-first manner. Due to the perfect assignment problem the assignment of
the cyclic sub graph could lead to much empty buckets. These empty buckets
are filled up with the assignment of the acyclic sub graph. It is possible that the
fixed number of buckets is to small and the cyclic sub graph can not be assigned
in this case the algorithm starts over and chooses other hash functions.

Fox et al.[6] proposes an OPMPHM algorithm that uses random cyclic bi-
partite graphs. The algorithm uses additionally a bit for each vertex to handle
the vertices of the cyclic sub graph. The algorithm consists also of the steps:
mapping, ordering and searching. The mapping step constructs with three hash
functions the random graph. The first and second hash function define the edges
the third hash function helps with the assignment of cyclic sub graph edges. The
ordering step divides the random graph in a cyclic and acyclic sub graph. The
searching step assigns randomly first the cyclic sub graph and then the acyclic
sub graph. The bit for each vertex gives more possibilities to solve the perfect
assignment problem, since it causes a mapping scheme change for that element.
Also in this OPMPHM algorithm due to the perfect assignment problem it is
possible that the assignment of the cyclic sub graph fails, if this happens the
algorithm starts over.

Czech et al.[4] uses acyclic bipartite graphs. This algorithm is a special case
of the in this thesis proposed algorithm with r = 2.

4 Implementation

4.1 Randomness

Every randomized algorithm needs a pseudo random function. This OPMPHM
implementation uses a non cryptographic pseudo random number generator
from Ray Gardner4, it is based on Park et al.[7] and Carta[3]. The pseudo
random number generator uses Schrage’s method[9] to avoid overflow problems
and is the function:

f(z) = 16807z mod 231 − 1

The seeds are represented as int32_t. Due to the shape of this function and
the datatype used for the seeds, the initial seed should not be 0 or bigger

4www8.cs.umu.se/ isak/snippets/rg rand.c
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than 231 − 2. Note that when the seed is 0 or 231 − 1 the pseudo random
number generator generates a series of 0 and is useless. The initial seed is simply
generated by the C standard library function time(...), with parameter NULL.
The time(...) returns with parameter NULL the passed seconds since a fixed
date in the past, the main advantage of the time(...) is the portability. When
the value returned by time(NULL) is bigger than 231 − 2 a modulo operation
with 231− 1 bring the initial seed back to range. In the most unlikely case that
after the modulo operation the initial seed is 0 it will be set to 1.

4.2 Seeded Hash Function

The seeded hash function is hashlitte(....) from Bob Jenkins5, it supports
big and little endian systems. The seeded hash function first initializes three
uint32_t variables with the sum of:

• the length of the string to hash

• the seed

• a hard-coded value

Then a loop over the string adds always three uint32_t parts of the string to the
three variables. These three variables then are mixed by a procedure using xor,
addition, subtraction and rotation. At the end of the string the third variable
is returned. The hard-coded value is needed for situation where the passed seed
is to small.

4.3 Recursive Acyclic Test

To test if a r-uniform r-partite hypergraph is acyclic Czech at al.[5] proposed a
recursive O(n) time algorithm, where n is the number of edges. The algorithm
has two components:

1. loops over the vertices, invocate the recursive procedure for every vertex
with degree 1

2. recursive procedure with a vertex as parameter:

• remove the edge that connects the vertex from the r-uniform r-partite
hypergraph

• if other by that edge connected vertices have degree 1, invocate the
recursive procedure

Since the recursion works like a stack the edges are processed in a first in last out
manner. The recursive process handles a connected component of the r-uniform
r-partite hypergraph, as long as there is a degree 1 vertex and the main loop
ensures that all of the connected components are treated. When at the end of
the main loop the r-uniform r-partite hypergraph is empty, then the r-uniform
r-partite hypergraph was acyclic.

5http://burtleburtle.net/bob/c/lookup3.c
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4.4 r-uniform r-partite Hypergraph

The following structures show how the r-partite r-uniform hypergraph is stored.
One vertex of the r-uniform r-partite hypergraph is represented by the following
structure:

typedef struct

{

uint32_t firstEdge;

uint32_t degree;

} OpmphmVertex;

Listing 1: Vertex of the r-uniform r-partite hypergraph

The vertex stores a list of edges that are connected to that vertex and saves in
firstEdge the index of the first edge of the list and in degree the length of the
list. The edge is represented by:

typedef struct

{

uint32_t order;

uint32_t * nextEdge;

uint32_t * vertices;

} OpmphmEdge;

Listing 2: Edge of the r-uniform r-partite hypergraph

The vertices and nextEdge array have always r entries. One edge stores the
order(s) in order, this value is the predefined order of s ∈ S. The nextEdge

entries are the next edges in the r lists, since each edge connects r vertices in
r separate components, each edge is exactly in r lists. The vertices store the
indices of the vertices connected by the edge. This field is an uint32_t because
that is the return type of the seeded hash function. The seeded hash function
decides to which vertices an edge is connected. This indexed edge and vertex
representation allows an efficient traversal over edges and vertices connected by
those edges, it also allows an efficient construction of the r-uniform r-partite
hypergraph and deletion of edges. The whole r-uniform r-partite hypergraph is
stored in:

typedef struct

{

OpmphmEdge * edges;

OpmphmVertex * vertices;

uint32_t * removeSequence;

uint32_t removeIndex;

} OpmphmGraph;

Listing 3: r-uniform r-partite hypergraph

The edges is an array with n entries and holding all the edges. The vertices
is also an array with dcn/rer entries and is holding all the vertices. In this
representation the r-uniform r-partite hypergraph is considered empty when all
vertices have a degree of 0. The removeSequence is an array with n entries. The
recursive acyclic test fills the removeSequence with the help of the removeIndex.
After a successful mapping step, when the r-uniform r-partite hypergraph is
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acyclic the removeSequence contains the indices of the edges. The removeSequence

is than used by the assignment step, to assign the edges in reversed sequence.
All three structures, the OpmphmVertex, the OpmphmEdge and the OpmphmGraph

are disposable and only needed to assign the values of the g() function. Storing
the OpmphmGraph permanently would be a waste of memory.

The following example shows how an r-uniform r-partite hypergraph is stored
with the OpmphmGraph. The first table represents the vertices array and the
second the edges array.

(a) G3 = (V = {v1, v2} ∪ {v3, v4} ∪ {v5, v6}, E = {e1, e2, e3})

v1 v2

v3

v4 v5

v6

e1 e2 e3

(b) Memory Image of OpmphmGraph from G3

Vertices v1 v2 v3 v4 v5 v6
firstEdge e2 e3 e2 e3 e3 e2
degree 2 1 2 1 2 1

Edges e1 e2 e3
order 2 1 0

r 1 2 3 1 2 3 1 2 3
nextEdge e1 e1 e1
vertices v1 v3 v5 v1 v3 v6 v2 v4 v5

An iteration over the vertices that connect an edge uses the vertices array of
the OpmphmEdge structure. An iteration over the edges that are connected to a
vertex first looks in the degree to determine the iteration length. The starting
edge is the firstEdge, the next edge is stored in the corresponding component
id (r) of the edge’s nextEdge array. The iteration over all edges of v5 first gets
to the edge e3 and than from e3’s nextEdge array with the component id r = 3
to the edge e1. Note that G3 is acyclic, with the removeSequence = {e3, e1, e2}.

4.5 The OPMPHM Build

The OPMPHM build is separated in two steps: mapping and assignment. When
both steps succeed the OPMPHM is stored in the following structure:

typedef struct

{
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int32_t * hashFunctionSeeds; // r seeds for f0, . . . , fr−1

uint8_t rUniPar; // actual value of r
size_t componentSize; // dcn/re
size_t * graph; // stores the g()
size_t size;

} Opmphm;

Listing 4: The OPMPHM

The hashFunctionSeeds stores seeds used for the seeded hash functions. The
componentSize stores the size of one component of the r-uniform r-partite hy-
pergraph. The size is the size of the graph in bytes and is only needed in case
the OPMPHM structure is serialized. The OPMPHM structure contains all
information to perform a search operation with the OPMPHM.

4.5.1 The Mapping Step

The mapping step finds acyclic r-uniform r-partite hypergraphs. This pseudo
code describes the mapping step of the RAM algorithm introduced by Botelho[2]:

1: seed = generateInitialSeed ()

2: do

3: {

4: // generate seeds for f0, . . . , fr−1

5: for ri in {0, . . . , r − 1}
6: {

7: seed = pseudoRandomFunction (seed);

8: Opmphm.hashFunctionSeeds[ri] = seed;

9: }

10:
11: // construct Gr

12: Gr = ∅
13: for ni in {0, . . . , n− 1}
14: {

15: for ri in {0, . . . , r − 1}
16: {

17: // determine vertex with hash function

18: Gr.edges[ni]. vertices[ri] =

19: hashFunction (element[ni].name ,

20: Opmphm.hashFunctionSeeds[ri]) mod dcn/re;
21:
22: // calculate vertex index

23: v = ridcn/re + Gr.edges[ni]. vertices[ri];
24:
25: // add edge to Gr

26: Gr.edges[ni]. nextEdge[ri] =

27: vertices[v]. firstEdge;

28: Gr.vertices[v]. firstEdge = ni;

29: ++Gr.vertices[v]. degree;

30: }

31: }

32: } while (isCyclic (Gr))

Listing 5: Pseudo Code of the Mapping procedure
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The while loop (line 2-32) searches for acyclic r-uniform r-partite hypergraphs.
The procedure only stops when the recursive acyclic test (line 32 isCyclic (Gr))
returns false. The start of the procedure (line 1) is the generation one ran-
dom initial seed. The for loop (line 5-9) expands the single random initial
seed with the pseudo random number generator (pseudoRandomFunction(...)
to r random seeds. The r random seeds are stored in the Opmphm (line 8) be-
cause the final OPMPHM needs the seeds for lookup. The acyclic graph search
iteration starts with an empty r-uniform r-partite hypergraph (OpmphmGraph
line 12). In the acyclic graph search iteration the inner for loop (line 15-
30) appends for every element of |S| = n an edge in Gr. The edge is ap-
pended to the lists in the r vertices. The vertices are determined with the
seeded hash function (hashFunction (...) in line 18). The seeded hash func-
tion uses the elements name (element[ni].name) and the respective random seed
(Opmphm.hashFunctionSeeds[ri]). When the procedure stops the recursive acyclic
test isCyclic (Gr) has filled the removeSequence with the sequence of repeated
deletion of edges. The sequence of repeated deletion of edges is needed in the
assignment step.

4.5.2 The Assignment Step

The assignment step assign for every vertex of Gr a value in the Opmphm.graph[]

array. The Opmphm.graph[] array represents the stored g() function. The fol-
lowing pseudo code describes the generalized version of assignment step from
Czech et al.[4]:

1: for vi in {0, . . . , dcn/rer}
2: {

3: isAssigned[vi] = 0;

4: }

5: // assign in reverse sequence of deletion

6: for rSi in reverse (OpmphmGraph.removeSequence [])

7: {

8: edgeToAssign = Gr.edges[rSi]

9:
10: // (r index , Opmphm.graph [] value)

11: (assignableVertex , assignedValue) =

12: getAssignableVetex (edgeToAssign );

13:
14: // calculate vertex index

15: v = assignableVertex * dcn/re +

16: edgeToAssign.vertices[assignableVertex ];

17:
18: // assign assignableVertex

19: if (assignedValue >= n)
20: {

21: assignedValue = assignedValue mod n;
22: }

23: order = order(element[rSi])
24: if (assignedValue <= order)

25: {

26: Opmphm.graph[v] = order - assignedValue;

27: }

28: else
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29: {

30: Opmphm.graph[v] = (n - assignedValue) + order;

31: }

32: isAssigned[v] = 1;

33: }

Listing 6: Pseudo Code of the Assignment procedure

The assignment procedure uses the array isAssigned[] to store the assignment
state of every vertex of Gr. First the state of all vertices is set to not assigned
(line 1-4). The assignment step iterates over the edges in the reverse sequence
of deletion and assign the connected vertices (6-33). The assignment of an edge
uses a sub procedure getAssignableVetex (...) (line 11). The sub procedure
assign all vertices of the edge except one and sums up the values of the assigned
vertices. getAssignableVetex (...) returns a tuple where the first entry is the
r index of the not assigned vertex (assignableVertex) and the second entry is
the sum (assignedValue) (but more to this sub procedure later). A modulo
operation brings the assignedValue in the range between 0 and n (line 19-22).
Depending on the order(si) of the element and the assignedValue the last vertex
is assigned to fulfill the mapping scheme of the OPMPHM (line 23-31). At the
end of an edge assignment the last assigned vertex is set to assigned (line 32).

The sub procedure getAssignableVetex (...) is specified by the pseudo code:

1: procedure getAssignableVetex (OpmphmEdge edgeToAssign)

2: {

3: assignableVertex = r;
4: assignedValue = 0;

5: for ri in {0, . . . , r − 1}
6: {

7: // calculate vertex index

8: v = ridcn/re + edgeToAssign.vertices[ri];
9: if (! isAssigned[v])

10: {

11: if (assignableVertex == r)
12: {

13: // found first assignableVertex

14: assignableVertex = ri;
15: }

16: else

17: {

18: // assignableVertex already found

19: // just assign some value

20: Opmphm.graph[v] = 42;

21: assignedValue += graph[v];

22: isAssigned[v] = 1;

23: }

24: }

25: else

26: {

27: // vertex is assigned

28: assignedValue += graph[v];

29: }

30: }

31: return (assignableVertex , assignedValue );
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32: }

Listing 7: Pseudo Code of the getAssignableVetex procedure

The parameter of the sub procedure is an edge to assign. The sub procedure
iterates over all vertices of that edge to assign (line 5-30). The first not as-
signed vertex is the assignableVertex (line 11-15), that will be assigned later
by the assignment procedure. All not assigned vertices encountered after the
assignableVertex is found are assigned with an arbitrary value (line 16-23).
The vertices are set to assigned and the assignedValue is updated. Should the
iteration encounter an assigned vertex only the assignedValue is updated. The
reversed sequence of repeated deletion of edges created during the recursive
acyclic test guarantees that there is always at least one not assigned vertex.

In the implementation the isAssigned[] array of the assignment step is not
needed. The Opmphm.graph[] array contains also the is assigned information
since 0 mod n = 0 and n mod n = 0, the 0 value is used to represent not
assigned and the n value is used to represent the 0.

The source code of the OPMPHM is in Elektra’s GitHub6 and designed to
work also standalone.

4.5.3 Complexity

Botelho[2] states that the mapping step of the RAM algorithm is expected to
run in O(nr), if the c value is above the minimal value. The assignment step
runs in O(nr). Since r is assumed to be constant both time complexities and
the overall time complexity of the OPMPHM build is O(n).

The space complexity of the stored OPMPHM depends completely on the
value of c, since the g : V → {0, 1, . . . , n− 1} function stored in the OPMPHM
structure in the graph field has dcn/rer entries. During the build the r-uniform
r-partite hypergraph must also be stored, the space needed is dominated by the
number of vertices and therefrom detents also on the c value.

4.6 The Hybrid Search

Elektra’s binary search takes due the always sorted keys O(log2(n)) time, where
n is the number of keys in the keyset. The OPMPHM search time is constant
and therefore on long term faster, but the OPMPHM must be build before
search. The OPMPHM build complexity is linear in the number of keys in the
keyset and thus expensive compared to the binary search. The OPMPHM is
build for a static keyset and must be rebuild only if a single key changes. On
one hand is the binary search that is optimal for dynamic keysets and on the
other hand is the OPMPHM that is the best for static keysets. The crucial
points are the keyset alterations and the number of searches made between two
alterations.

Let k be the number of searches between two alterations and n be the key-
set size. There is a point where the binary search usage costs more than the
OPMPHM usage because there exists a k such that O(k log2(n)) > O(n). The
OPMPHM usage could also be more expensive than the binary search usage,
when the number of searches is too small. Therefore a sequence of searches

6https://master.libelektra.org/src/libs/elektra/opmphm.c
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between two keyset alterations is or is not worth using the OPMPHM. The
implementation relies on a benchmark based heuristic function that determines
depending on n and k if it is worth using the OPMPHM or not.

The implemented dynamic branch predictor from Yeh and Patt[10] is mod-
ified to predicts if it is worth using the OPMPHM (1) or not (0). At the first
search after a keyset alteration the predictor predicts if it will be worth using
the OPMPHM or not.

The dynamic branch predictor is stored in a additional data structure:

typedef struct

{

uint16_t history; // history register

uint8_t * patternTable; // pattern history table

size_t size;

size_t lookupCount; // number of searches

size_t ksSize; // keyset size

} OpmphmPredictor;

Listing 8: The Opmphm Predictor

The implementation limits the history register to 16 bits. To determine the last
outcome with a heuristic function the data structure stores the ksSize and the
lookupCount. The ksSize must be stored because the keyset’s size is changed
with an alteration of the keyset. The lookupCount keeps track of the number
of searches made. The size is the size of the patternTable in bytes and is only
needed in case the OpmphmPredictor structure is serialized. The source code
of the modified branch predictor is in Elektra’s GitHub7.

4.7 Integration in Elektra

Elektra’s keyset is extended to hold a pointer of an OPMPHM and modified
branch predictor instance. Keyset alterations are crucial for both, not detected
keyset changes entail wrong search results and non accurate predictions. The
OPMPHM and the modified branch predictor need independent mechanisms
to keep track of alterations. At an alteration the OPMPHM just gets freed.
The modified branch predictor uses Elektra’s keyset flags, that mark a keyset
instance. A new keyset flag named KS_FLAG_NAME_CHANGE is created. Hooks
are created to minimize the impact of the implementation to the API. The
invalidation hook is invoked by all altering public and private API function
invocations:

7https://master.libelektra.org/src/libs/elektra/opmphmpredictor.c
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Name Description
ksClose (...) Resets a keyset and destroys all

contained keys
ksClear (...) Destroys all contained keys from a

keyset, after this operation the key-
set is empty

ksAppendKey (...) Appends a single key to a keyset
ksAppend (...) Appends a whole keyset to another

keyset
ksCopyInternal (...) Copies keys withing a keyset
ksCut (...) Extracts the all keys from a keyset

that are below a certain key in the
hierarchy

ksPop (...) Extracts the last key of the keyset

Table 1: Altering API Function

The API documentation8 documents all public operations. The invalidation
hook frees the OPMPHM and marks the keyset instance with the
KS_FLAG_NAME_CHANGE flag.

The API has also coping functions, the coping hook is invoked by all coping
API function invocations:

Name Description
ksDup (...) Duplicates a keyset but not the

contained keys, there it is a flat
copy

ksDeepDup (...) Duplicates a keyset and the con-
tained keys

ksCopy (...) Replaces the content of a existing
keyset with the content of another
keyset

Table 2: Coping API Functions

The coping hook copies the OPMPHM instance and modified branch predictor
instance.

The modified branch predictor decides what search to use, but the API
user can overrule the predictor. Elektra’s search options are extended with
KDB_O_OPMPHM and KDB_O_BINSEARCH. When one of these options is set the mod-
ified branch predictor is overruled and not used for search. If the predictor is
not overruled it uses the KS_FLAG_NAME_CHANGE flag to determine changes. When
there is a change the modified branch predictor predicts what search to use,
when there is no change the number of searches are counted for the heuristic
function of the predictor. The modified branch predictor only takes actions
above a certain keyset size, the opmphmPredictorActionLimit defines that limit.

8https://doc.libelektra.org/api/latest/html/group keyset.html

20



5 Experiments

5.1 Benchmark Seeds

All benchmark data is generated randomly. The benchmark data is generated
with the help of an initial seed and the pseudo random function. The statistical
software R is the source of all random initial seeds. The function runif(...)

generates uniformly distributed seeds in the range from 1 to 231 − 2.

5.2 Random Generated Keysets

The key names of a keyset influence the OPMPHM build and the binary search.
The OPMPHM build relies on seeded hash functions that hash the key names
and the binary search compares the key names. Always different key names are
practically rare and do not evaluate the algorithms properly. The keysets for the
benchmarks are generated by the highly adaptable generateKeySet(...) func-
tion, that outputs partial equal key names. With the generateKeySet(...)

function it is not only possible the generate key names that start with an
equal name, it is also possible to let them end with an equal name. The
generateKeySet(...) takes an initial seed, the desired size and a keyset shape
description. The generation constructs with the help of the pseudo random func-
tion a random hierarchical tree in a deep first manner and then translates the
tree into a keyset. The keyset shape description has the following properties:

Characters type probability: The vertex names are generated randomly out
of two pools, the alphabet and numbers pool and the special characters
pool. This property influences the probability of a character being picked
from the pools.

Vertex name length: A minimal and maximal vertex name length specifies
the range of the name length, the generation randomizes the vertex name
length between these values.

Number of children: Is specified by a function that defines the number of
children for a vertex and will be invoked for every vertex in the hierar-
chical tree, during the deep first generation. The function has a variety
of parameters to construct dynamic shapes. This function can also set a
label for a sub tree and use it later in the generation to copy the whole
labled sub tree at the used place. Labeling generates key names that end
with an equal name.

Vertex probability: Influences the probability of a vertex being a key.

The following example keyset shape uses only alphabet and numbers characters.
With a minimum vertex name length of 5, a maximum vertex name length of 9
and the vertex probability set to 0. The number of children function that uses
the desired size and the actual level of the hierarchical tree:

numberOfChildren(. . . , size, level, . . . ) =

{
3 if level < log3(size)− 1

0 otherwise
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Generates the following keyset with size of 9 keys:

/plugin5/data0

/plugin5/data1

/plugin5/data5

/plugin46/data13

/plugin46/data63

/plugin46/data99

/plugin87/data41

/plugin87/data78

/plugin87/data84

Every vertex in the hierarchical tree of this generated keyset has 3 children as
long as the level is under 2. Otherwise the number of children is 0. The vertex
probability is 0, therefore only the leafs of the hierarchical tree are keys. With
the labeling it would be possible to have equal sub trees for all plugin* vertices
and would look like:

/plugin5/data0

/plugin5/data1

/plugin5/data5

/plugin46/data0

/plugin46/data1

/plugin46/data5

/plugin87/data0

/plugin87/data1

/plugin87/data5

All designed keyset shapes are defined in the getKeySetShapes () function of the
OPMPHM benchmark file9.

5.3 Hardware

The time measuring benchmarks are executed on these tree systems (all data
from the linux command lshw):

9https://master.libelektra.org/benchmarks/opmphm.c
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i7-6700K
CPU Intel Core i7-6700K @ 4 GHz
L1 cache size 256 KB
L2 cache size 1 MB
L3 cache size 8 MB
RAM 16 GB DDR4 @ 2133Mhz

i7-3517U
CPU Intel Core i7-3517U @ 1.9 GHz
L1 cache size 128 KB
L2 cache size 512 KB
L3 cache size 4 MB
RAM 4 GB DDR4 @ 1600Mhz

1800X
CPU AMD Ryzen 7 1800X @ 3.6 GHz
L1 cache size 768 KB
L2 cache size 4 MB
L3 cache size 16 MB
RAM 64 GB DDR4 @ 2400 Mhz

Table 3: Hardware

Elektra is compiled with gcc version 6.3. The cmake is configured to Release

what is equivalent to -O 3. Logging and debug is disabled.

5.4 Runtime of the OPMPHM Build

The OPMPHM build has two steps the mapping step and the assignment step.
The runtime of the assignment step is fixed, but the runtime of the mapping
step depends on number of r-uniform r-partite hypergraph to construct. The
constuction of an acyclic r-uniform r-partite hypergraph depends on the two
constants:

r the number of components in the r-uniform r-partite hypergraph

c the vertices factor that influences the number of vertices in the hypergraph

Botelho[2] defines the function c(r) that specifies the minimal c values depending
on r, to ensure that the number of r-uniform r-partite hypergraphs to construct
is constant. Beside the minimal c value function from Botelho[2] there is no in-
formation about practical r and c values. The main task of this research question
is the construction and evaluation of two heuristic functions optimalR(n) and
optimalC(n). Both depend on the number of keys in the keyset n and aim to
minimize the runtime of the OPMPHM build.

RQ (i) Is the runtime of the OPMPHM build minimal?

The runtime of the OPMPHM build is minimized by minimizing the theoretical
O time complexity of the mapping step.
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5.4.1 Method

The huge time complexity of the combination from keysets, initial seeds, values
for r and values for c forces the use of three benchmarks. All benchmarks
measure the number of r-uniform r-partite hypergraphs to construct until the
mapping step is successful. The mapping step is successful when the r-uniform
r-partite hypergraph is acyclic.

The mapping benchmark is used to develop approximate versions of the two
heuristic functions optimalR(n) and optimalC(n).

The optimal mapping benchmark transforms the approximate versions of
the two heuristic functions to the final heuristic functions. Evaluates also
if the two heuristic functions lead to a minimal runtime of the OPMPHM
build.

The all seeds mapping benchmarks gives a blink to the behaviour of the
heuristic function over all possible seeds.

The mapping benchmark gives an overview how the mapping procedure
behaves for different keyset sizes (n), r-partite r-uniform hypergraphs (r) and
vertices factors (c). The benchmark uses the sequence an = (10, 15, an−2 ∗
2, an−2 ∗ 2, . . . , 1280) for the keyset sizes, previous evaluations indicated that
1280 as maximum is suitable. The previous evaluations had the same setup
as this benchmark beside different keyset sizes. The hypergraphs have from
2 to 7 components and the vertices factors are in a range from c(r) + 0.1 to
c(r) + 1.5, with a step size of 0.1, c(r) is the minimum vertices factors function.
One population consists of a set of random initial seeds and different random
generated keyset categorized by their size (n), multiple populations are used
and different hypergraph types (r) use different populations. All keyset shape
are used in this benchmark.

One population has 160 keysets per keyset size and 10000 random intial
seeds. The r = 2 r-uniform r-partite hypergraph used only one population
because a previous evaluation showed that the r = 2 could not compete with
the other r values. Also the minimal c value c(2) = 2.0 is much higher in
comparison to the other values. This disqualifies the r = 2 r-uniform r-partite
hypergraph from the evaluation. All other r values used 3 populations.

The benchmark for one population takes each single keyset from the popula-
tion and goes through all vertices factors (c) and measures with all initial seeds
from the population. Each measurement is counted and categorized by the key-
set size (n), the number of components of the hypergraph (r) and vertices factor
(c). The multiple results of multiple populations from one hypergraph type (r)
are united. The number of r-uniform r-partite hypergraphs to construct until
success are summarized with the xn,r,c,0.995 quantile.

The approximate heuristic function optimalR(n) is developed first. The
target is to create a function that returns for all keyset sizes (n ∈ N ) the
optimal number of components in the r-uniform r-partite hypergraph (r). The
evaluation of the punctual results defined by sequence of keyset sizes an =
(10, 15, an−2 ∗ 2, an−2 ∗ 2, . . . , 1280) is done first. The evaluation minimizes
the theoretical O time complexity of the mapping step with the following cost
function:
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n · r · xn,r,c,0.995

So the best number of components in the r-uniform r-partite hypergraph (r)
is chosen by fixating each punctual keyset size (n) and minimizing the theo-
retical O time complexity cost function. The vertices factors (c) are relevant
for the evaluation of the cost function but not for the resulting approximate
optimalR(n) heuristic function.

The punctual domain of the approximate optimalR(n) function is extended
for all n ∈ N, by transforming the points to intervals. The evaluation of the
individual numbers of components in the r-uniform r-partite hypergraph (r)
show a monotone property of the results. The result for all values of r, c and
n stays the same or gets better when increasing the n, above a small c value
to eliminate fluctuations. With the knowledge of the monotone property the
punctual domain is extended to intervals without a increasing of the theoretical
O time complexity costs. Each punctual result is therefore extended to the next
higher point. The number of components value for each interval comes from
the extended point. The highest point is transformed to infinity and the lowest
point is also extended to n = 1.

The approximate optimalR(n) function specifies the number of components
in the r-uniform r-partite hypergraph for the intervals. The target of the approx-
imate optimalC(n) function is to return for all intervals the optimal vertices
factor. The neglected values of the vertices factor (c) during the construction of
the approximate optimalR(n) function are now relevant. The vertices factors
(c) are obtained by creating a linear interpolation for every interval, using the
start and end vertices factors. The vertices factor value for the highest interval
is constant.

The optimal mapping benchmark uses the two approximate heuristic func-
tions, thus the variation in the number of components (r) and the number of
vertices factor (c) is not needed. This gives space for more keyset sizes (n) and
bigger populations. This benchmarks transforms the approximate versions of
the two heuristic functions to the final heuristic functions. This benchmark also
evaluates the final heuristic functions and uses therefore an increased number
of different keyset sizes.

The keyset sizes (n) are {2, 3, 4, . . . , 38, 39, 44, 49, . . . , 239, 240, 259, 279, 299,
. . . , 1279, 1280}, the gaps have a step size of 1, 5 and 20. One population
consists of a set of random initial seeds and different random generated keysets
categorized by their size (n). The benchmarks uses multiple populations. One
poulation has 560 keysets per keyset size and 20000 random intial seeds. This
benchmark used 5 populations. All keyset shape are used in this benchmark.

The benchmark for one population takes each single keyset from the pop-
ulation and uses all initial seeds form the population. Each measurement is
counted and categorized by the keyset size (n), all results from the populations
are united and summarized by the xn,0.995 quantile and the maximum.

The two approximate heuristic functions will repeatedly altered and mea-
sured, until the xn,0.995 quantile stabilizes at the values obtained by the mapping
benchmark.

The all seeds mapping benchmark uses multiple populations consisting of
one random keyset and all possible seeds in the range from 1 to 231 − 2. The
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tested keysets have the following sizes (n): 9, 29, 49, 69, 89, 109, 129. The bench-
mark for one population takes the keyset and counts the number of r-uniform
r-partite hypergraphs to construct until it is acyclic for all seeds. Due to the
time complexity only one keyset shape with short key names was used.

All results where obtained with the commit
9d397a5a3afb8cc6e84f76f7143e4de672182e6d of Elektra’s git repository10 and the
initial seeds from the rawdata repository11.

5.4.2 Results

The two heuristic functions are developed by minimizing the theoretical O time
complexity of the mapping step with the following cost function:

n · r · xn,r,c,0.995

The minimization used the result from the mapping benchmark. Figure 6 de-
picts the result for r = 3. In this result all constructed r-uniform r-partite
hypergraph have three components.

Figure 6: Result: Mapping Benchmark with r = 3
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Figure 6 shows how many r-uniform r-partite hypergraphs need to be con-
structed until an acyclic hypergraph is found. The x-axis is the keyset size.
The y-axis is the vertices factor in the r-uniform r-partite hypergraph (c). The
dots are the number of r-uniform r-partite hypergraphs to construct until an
acyclic hypergraph is found. Each dot is the xn,3,c,0.995 quantile of 4, 800, 000
measurements. The missing point is an inaccurate measurement, where at least
one measurement reached the implementation limit of 10 tries to find an acyclic

10git.libelektra.org
11https://github.com/ElektraInitiative/rawdata/tree/master/OPMPHM
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r-uniform r-partite hypergraph. The other results (also the disastrous r = 2)
are in the appendix section A.

The two resulting heuristic functions are:

optimalR(n) =


6 if 1 ≤ n < 15

5 if 15 ≤ n < 30

4 if 30 ≤ n < 240

3 otherwise

optimalC(n) =



3 if 1 ≤ n < 15

2.45→ 1.95 if 15 ≤ n < 30

2.35→ 1.45 if 30 ≤ n < 240

2.25→ 1.35 if 240 ≤ n < 1280

1.35 otherwise

The→ represents the endpoints of a linear interpolation and for example in the
second case the linear interpolation starts at 2.45 for n = 15 and goes to 1.95
for n = 29.

The two heuristic functions are used and where iteratively measured and
improved by the optimal mapping benchmark. Figure 7 display the final result
of the optimal mapping benchmark.

Figure 7: Result: Optimal Mapping Benchmark
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Figure 7 shows in detail how many r-uniform r-partite hypergraphs need to be
constructed until an acyclic hypergraph is found. The x-axis is the keyset size.
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The y-axis is the number of r-uniform r-partite hypergraphs to construct until
an acyclic hypergraph is found. The black line is the xn,0.995 quantile and the
gray line is the maxn maximum of 56, 000, 000 measurements.

All the results until now had random initial seeds the result in figure 8 is
obtained by using all possible initial seeds.

Figure 8: Result: All Seeds Mapping Benchmark
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Figure 8 shows the count of how how many r-uniform r-partite hypergraphs
need to be constructed until an acyclic hypergraph is found. The first row of
the x-axis is the number of r-uniform r-partite hypergraphs to construct until
the hypergraph is acyclic. The second row of the x-axis groups the number of
r-uniform r-partite hypergraphs to construct by their keyset size. The y-axis is
the count. Each keyset size result is obtained from only one keyset.

5.4.3 Discussion

All mapping benchmark results except the disastrous result for r = 2 (figures
6,16,17,18 and 19) show the monotone property above a the vertices factor c
of c(r) + 0.5. The disastrous mapping benchmark result with = 2 in figure 15
displays even an inverted monotone property. The results stay the same or get
worse when increasing the keyset size.

The mapping benchmark and the optimal mapping benchmark have a max-
imal keyset size of 1280. The mapping benchmark result with r = 3 in figure 6
comes close to the 1280 limit because x1280,3,1.35,0.995 = 1 and x960,3,1.35,0.995 =
2. The mapping benchmark results in the appendix section A (figures 16,17,18
and 19) show a much earlier encounter of the minimum xn,r,c,0.995 = 1 quan-
tile. But with the monotone property it is sufficient for the minimization of the
theoretical O time complexity of the mapping step.
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The minimization of the theoretical O time complexity of the mapping step
with the cost function lead to a minimization of the xn,r,c,0.995 quantile. Both
heuristic functions optimalR(n) and optimalC(n) return only values that lead
to a xn,r,c,0.995 quantile that is 1. Therefore the minimization of the theoretical
O time complexity of the mapping step implicates a minimization of the number
of r-uniform r-partite hypergraphs to construct until the hypergraph is acyclic.

The optimal mapping benchmark result in figure 7 confirms that the xn,0.995
quantile is always except for really small keyset sizes 1. Also for the keyset sizes
that where not measured with the mapping benchmark. The maximum maxn
depicts that there are bad initial seeds that can take on average up to 4 r-uniform
r-partite hypergraphs to construct until an acyclic one is found. For small keyset
sizes these bad initial seeds are not perceptible in the runtime of the OPMPHM
build. However an increasing keyset size will make bad initial seeds perceptible
in the runtime. The xn,0.995 = 1 result of the optimal mapping benchmark
states that the two heuristic functions optimalR(n) and optimalC(n) return
in 99.5% of the cases optimal values.

The all seeds mapping benchmark results in figure 8 indicate that there are
not many bad initial seeds. The result is obtained from only one keyset per
keyset size and is therefore only a blink to the distribution of the number of
r-uniform r-partite hypergraphs to construct until the hypergraph is acyclic.
The distribution shows that the most initial seeds lead to only one r-uniform
r-partite hypergraphs to construction.

5.5 OPMPHM Build vs Hsearch Build

Elektra’s OPMPHM build time is compared with the hsearch build time to
answer the second research question.

RQ (ii) How is the time performance of Elektra’s OPMPHM build in compar-
ison to the hsearch12 build?

5.5.1 Method

This benchmark measures the build time of the OPMPHM and the hsearch. The
keyset sizes start at 50 and increase to 19550 in steps of 500. For each keyset
size 5 different keysets are used. Each measurement was repeated 7 times.

Previous evaluations had shown that hsearch has a problem with too long
key names, thus the keysets come from a keyset shape that produces only short
names. This does not affect the comparison, since both get same shaped keysets.
It is not in the scope of this thesis to find out why hsearch has a problem with
too long key names. All data is aggregated by the median (x0.5).

The OPMPHM has in this benchmarks a fixed pool of 51 random initial
seeds. For every keyset and initial seed the build time was measured. The data
is first aggregated by the repeats, then by the initial seeds and at last by the
keysets.

The hsearch data is aggregated by the repeats and at last by the keysets.
The hsearch build benchmark measures different loads (α) 0.25, 0.5, 0.75, 1.

The result of both is one value successive aggregated per keyset size. This
benchmark is executed on all systems.

12Standard C library function http://linux.die.net/man/3/hsearch
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All results where obtained with the commit
9d397a5a3afb8cc6e84f76f7143e4de672182e6d of Elektra’s git repository13 and the
initial seeds from the rawdata repository14.

5.5.2 Results

The chart in figure 9 shows the result of the comparison between Elektra’s OPM-
PHM build and the hsearch build. This result is from the i7-6700K hardware
the result from the other hardwares is in the appendix section B.

Figure 9: Result: OPMPHM vs Hsearch on i7-6700K
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The x-axis is the keyset size. The y-axis is the time of the build in microseconds.
The gray line is the OPMPHM build time and the black line from dotted to
solid are the hsearch build times with the different loads.

5.5.3 Discussion

The results depict that the OPMPHM build time is linear, this corresponds to
the theoretical time complexity. The keyset size was extended to 29550 for the
OPMPHM on the i7-3517U hardware (figure 20). Because the range from 50 to
19550 indicated a non linear runtime.

The results made on the i7-6700K and 1800X hardware (figures 9 and 21)
show that the hsearch build time increases with the load. This result was
expected, though the results made on the i7-3517U hardware does not conform
with that expectation.

Comparing the worst hsearch build time with the OPMPHM build time
shows that the hsearch build is on average ≈ 60% faster than the OPMPHM

13git.libelektra.org
14https://github.com/ElektraInitiative/rawdata/tree/master/OPMPHM
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build. The hsearch build saves on average ≈ 60% of the time compared to the
OPMPHM build.

5.6 The Hybrid Search

The performance of the hybrid search relies on:

heuristic function that determines if a sequence of k searches between two
keyset alterations (keyset size n) is or is not worth using the OPMPHM.

history register length how many past events are remembered by the hybrid
search.

action limit that defines the minimum keyset size for the hybrid search usage.

The task for the third research question splits in two parts. The first part is
finding a heuristic function and the second part is the evaluation of the hybrid
search with the heuristic function and different settings. The actual values for
the history register length and the action limit result from this evaluation.

RQ (iii) How much superior and how much inferior is the hybrid search time
compared to the standalone binary search time in random cases?

5.6.1 Method

The target of the heuristic function is to define how many searches (k) are
necessary that the OPMPHM is faster than the binary search. Since the binary
search time and the OPMPHM build time depend on the keyset size the heuristic
function also depends on the keyset size. The benchmark measures for a keyset
size n the time spent to make k searches with the binary search and the time
spent to make k searches with the OPMPHM including the OPMPHM build
time. The first k where the OPMPHM usage time is fast than the binary search
time defines the heuristic function. The measurement was made with all keyset
shapes except one that had unnaturally long key names. Because previous
evaluation had show that the results with that keyset shape where unusable.

The OPMPHM search time consists of build time and search time. Due to
time complexity reasons the benchmark was split up in build time and search
time. The OPMPHM build time benchmark has the same settings as in the
OPMPHM compare with hsearch.

Both search time benchmarks used a keyset size that starts at 50 and increase
to 19550 in steps of 500. For each keyset size 3 different keysets are used, the
measurements where repeated 7 times. The data was aggregated first by the
repeats and then by the keysets always with the median (x0.5). The different
keyset shapes are then aggregated by the mean. The number of searches starts
at 500 and increases to 32000 in steps of 500. Each search was made randomly.
For both the result is a matrix where one dimension is the keyset size the other
the number of searches. The OPMPHM build time was added to the OPMPHM
search time. The heuristic function is created by going through all keyset sizes
(n) and find that number of searches (k) where the OPMPHM search time is
smaller than the binary search time. Through this result the heuristic function
defines what sequence of search is or is not worth using the OPMPHM.
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The final benchmark evaluates the hybrid search, by measuring the time of
random patterns. A pattern consists of 66 random sequences, each sequence
has a random number of searches. In between the sequences an alteration is
simulated, by setting the KS_FLAG_NAME_CHANGE flag of the keyset and by clearing
the OPMPHM. Each sequence has a random length between 1 and twice the
heuristic function. Therefore the random number of searches are half in the not
worth using the OPMPHM area and half in the worth using the OPMPHM area
of the heuristic function.

The benchmarked keyset sizes are defined by the series an = (100, 200, . . . ,
1000, 1200, . . . , 5000, 6000, . . . , 10000) and history register lengths from 5 to 11
bits in steps of 2. The i7-6700K system used 999 pattern per keyset size, the
other systems use 503. The number of patterns for the other systems must be
restricted to reduce the runtime of the final benchmark. The benchmark rotates
through all keyset shapes, except the one with the unnaturally long key names.
The hybrid search time and the standalone binary search time is measured.
During the measurement all searches were random and each measurement is
repeated 5 time and the median (x0.5) is taken. The OPMPHM if used, used
for each pattern different 66 random initial seeds. The two evaluation are made
for every history register length individually.

For each keyset size the measurements are divided in two sets where the
hybrid search time is faster or the standalone binary search is faster. The first
evaluation calculates a ratio out of the cardinality of the two sets. The ratio
represents the percentage of measurements where the hybrid search is faster than
the standalone binary search. The second one evaluates each sets individually,
by calculating for each element the percentage of how much the hybrid search
time is faster or how much the standalone binary search time is faster. All
the resulting percentages are then aggregated by the mean. This calculation
represents the average percentage how much superior and how much inferior is
the hybrid search time compared to the standalone binary search time.

The results of the first part where obtained with the commit
9d397a5a3afb8cc6e84f76f7143e4de672182e6d. The results of the second part where
obtained with the commit
3858e2dd02738cec84c9c10cec3901978246fecf. Both of Elektra’s git repository15.
The initial seeds are from the rawdata repository16.

5.6.2 Results

The results from the first part are used to find the heuristic function. Figure 10
depicts how many searches are necessary to make the OPMPHM usage worth.

15git.libelektra.org
16https://github.com/ElektraInitiative/rawdata/tree/master/OPMPHM
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Figure 10: Result: Heuristic Function
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The x-axis is the keyset size and the y-axis is the number of searches. The
black lines are the results of the different hardwares and show above what num-
ber of searches the OPMPHM usage is faster than the binary search usage.
For example with a keyset size of 10000 and on the i7-6700K hardware are
≈ 12500 searches needed to make the OPMPHM usage worth. The function
(n + 3nr)/log2(n) is the theoretical heuristic function resulting from both the-
oretical O time complexities. The final heuristic function is:

n+ 5000 = h(n) > k

The function n + 5000 has the advantages that is fast computable and does
not underestimate the measured values. This heuristic function determines how
many searches (k) are necessary to make the OPMPHM usage worth. When
the number of searches is bigger than h(n) it is worth using the OPMPHM.

The found heuristic function is used to obtain the final results. Figure 11 shows
the percentage of random cases where the hybrid search with a 9 bit history
register length is faster than the standalone binary search.
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Figure 11: Result: Cases Hybrid Search faster with 9 Bit History Register

0.00

0.25

0.50

0.75

1.00

0 2500 5000 7500 10000

Keyset size (n)

%
ca

se
s

h
y
b
ri

d
se

ar
ch

fa
st

er

i7-6700K i7-3517U 1800X

The x-axis is the keyset size and the y-axis is the percentage of random cases
were the hybrid search is faster than the stand alone binary search. The three
black lines are the different hardwares. Figure 12 is a enlargement of the keyset
range from 0 to 1200.

Figure 12: Result: Cases Hybrid Search faster with 9 Bit History Register,
Enlarged
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Here also x-axis is the keyset size and the y-axis is the percentage of random
cases were the hybrid search is faster than the standalone binary search. The
three black lines are the different hardwares. The other history register lengths
are in the appendix section C, subsection cases hybrid search faster.

Figure 13 examines the random cases where the hybrid search is faster than
the standalone binary search. This figure exhibits the average percentage how
much faster is the hybrid search compared to the standalone binary search.

Figure 13: Result: Hybrid Search Superior 9 Bit History Register
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The x-axis is the keyset size. The y-axis is the average percentage how much
faster the hybrid search is compared to the standalone binary search. The
black lines represent the different hardwares. For example with a keyset size of
10000 and on the i7-6700K hardware the hybrid search is ≈ 10% faster than the
standalone binary search. In this example the hybrid search saves on average
≈ 10% of the time compared to the standalone binary search.

Figure 14 examines only the random cases where the standalone binary
search is faster than the hybrid search.
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Figure 14: Result: Hybrid Search Inferior 9 Bit History Register
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The x-axis is the keyset size. The y-axis is the average percentage how much
faster the standalone binary search is compared to the hybrid search. The black
lines represent the different hardwares. There are missing points in this figure,
these keyset sizes had no inferior random cases. For example with a keyset size
of 3100 and on the i7-6700K hardware the standalone binary search is ≈ 2.5%
faster than the hybrid search. In this example the standalone binary search
saves on average ≈ 2.5% of the time compared to the hybrid search. The other
superior and inferior results for the other history register lengths are in the
appendix section C, subsection hybrid search superior and inferior results.

5.6.3 Discussion

Figure 10 shows that each hardware has another number of search necessary
to make the OPMPHM usage worth. The 1800X hardware is really close and
the i7-6700K is far away from the theoretical heuristic function. This made the
choice for the good heuristic function difficult. Choosing a heuristic function
that overestimates the real costs is choosing the lesser evil. Since both over- and
underestimation of the real costs by the heuristic function is not optimal, but the
underestimation is much worst than the overestimation. Since the OPMPHM
would be used in cases where the binary search is faster. Most of the OPMPHM
usage time is spent in the build, since the search works in O(1). Compared to
a small number of searches with the binary search the OPMPHM build is much
more expensive. Therefore it is saver to build the OPMPHM only in cases where
it is ensured that it is profitable.

The cases hybrid search faster results (figures 22,11,23 and 24) depict that
the number of cases where the hybrid search is faster grow when the history
register length is increasing. The hybrid search superior results (figures 25,13,26
and 27) show also a general improvement of the hybrid search when the history
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register length is increasing. Even the hybrid search inferior results (figures
28,14,29 and 30) exhibit that the standalone binary search is getting slower
when the history register length is increasing. Thus the performance of the
hybrid search is increasing with the length of the history register. Though a
long history register length comes at high costs, since the space complexity of
the modified branch predictor is exponential in the history register length.

The history register length of 9 bit represents a good tradeoff between per-
formance and memory consumption. The enhancements of the results from 9 bit
history register length to 11 bit history register length are not big and the mem-
ory consumption is with a 9 bit history register length only 128 byte compared
to the 11 bit history register length with 512 byte.

The cases hybrid search faster result in figure 11 show that except for small
keyset sizes the hybrid search is in almost all random cases faster than the
standalone binary search. The enlarged cases hybrid search faster result in
figure 12 shows that above a keyset size of 599 the percentage of random cases
where the hybrid search is faster grows over 90%. This makes 599 to a good
action limit, that defines the minimum keyset size for the hybrid search usage.

The enlarged cases hybrid search faster result in figure 12 depicts also that
the hybrid search is weak at a small keyset size. The hybrid search inferior
results in figure 14 confirm that at small keyset sizes performance is lost.

An average calculation over the superior results shows that the hybrid search
is on average ≈ 8.53% to ≈ 20.92% faster than the standalone binary search.
Depending on the hardware ≈ 8.53% to ≈ 20.92% of the time is saved by using
the hybrid search.

An average calculation over the inferior results shows that the standalone
binary search is on average ≈ 2.49% to ≈ 6.83% faster than the hybrid search.
Depending on the hardware ≈ 2.49% to ≈ 6.83% of the time is saved by using
the standalone binary search.

6 Conclusion

The goal of this thesis was the extension of Elektra’s search operation with an
OPMPHM, but without any change of the Elektra API. In this thesis three
heuristic functions where developed and measured to avoid any change of the
Elektra API and to gain performance. Two of them have the target to mini-
mize the OPMPHM build runtime. The first research question evaluates there
quality:

RQ (i) Is the runtime of the OPMPHM build minimal?

This question was evaluated with benchmarks that used random cases. The
results had shown that the runtime of the OPMPHM build is in 99.5% of the
random cases minimal. Since the OPMPHM algorithm is a randomized algo-
rithm there is no guarantee that the runtime of the OPMPHM build in all cases
minimal.

The evaluation of the second research question, showed how the OPMPHM
performs compared to a common hash map.

RQ (ii) How is the time performance of Elektra’s OPMPHM build in compar-
ison to the hsearch17 build?

17Standard C library function http://linux.die.net/man/3/hsearch
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The time performance of Elektra’s OPMPHM build in comparison to the hsearch
build is bad, the hsearch build is on average ≈ 60% faster than the OPMPHM
build and therefore saves ≈ 60% of the time.

The third heuristic function is used by the hybrid search, the aim of the
hybrid search is to achieve the goal of this thesis. The third research question
evaluated the hybrid search and therefore all the implemented components.

RQ (iii) How much superior and how much inferior is the hybrid search time
compared to the standalone binary search time in random cases?

The results showed that the percentage of random cases where the hybrid search
is faster than the standalone binary search is for a keyset sizes larger than 599
almost always 100%. How much superior and how much inferior the hybrid
search time is compared to the standalone binary search time strongly depended
on the hardware used to measure. In the hybrid search superior random cases
the hybrid search is on average from ≈ 8.53% to ≈ 20.92% faster. Using the
hybrid search instead of the standalone binary search saved in this cases ≈
8.53% to ≈ 20.92% of the time. In the hybrid search inferior random cases the
standalone binary search time is on average from ≈ 2.49% to ≈ 6.83% faster.
Using the standalone binary search instead of the hybrid search saved in this
cases ≈ 2.49% to ≈ 6.83% of the time.

6.1 Further Work

The OPMPHM algorithm can only handle a limited keyset size, since the seeded
hash function returns only an uint32_t. The seeded hash function maps an
element to the vertices in each component of Gr. This implicates that one
component of Gr has at maximum of 232 − 1 vertices and one component size
is defined as cn/r. The heuristic values from optimalR(n) and optimalC(n)

for a great n placed in the equation 232 − 1 = cn/r, result in n = 9544371767.
The 9544371767 represents the limit of the keyset size. This problem can be
resolved by replacing the actual seeded hash function with another seeded hash
function that returns an uint64_t. The replacement forces the reevaluation of
the first research question, including the reconstruction of the heuristic functions
optimalR(n) and optimalC(n).

The general performance on not so powerful hardware could be improved by
hard-coding the number of components in the r-uniform r-partite hypergraph
r. This would force a choice for an optimal value of r and would make the
heuristic function optimalR(n) obsolete. The major work of the algorithm is
done in loops over r and a hard-coded value would allow the compiler to optimize
the code more. This optimization could be combined with the replacement of
the modulo operation by the logic and operator. The replacement would limit
the component sizes of Gr to 2x − 1.

The OPMPHM algorithm implements only the mapping step from Botelho’s
RAM algorithm[2]. The here presented assignment step could be replace with
the assigning and ranking step of the RAM algorithm from Botelho[2]. This
would lead to a more space efficient OPMPHM.

The heuristic function that determines how many searches are necessary to
make the OPMPHM usage worth, is developed and evaluated only on the hard-
ware used in this thesis. The heuristic function could be custom made for every
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hardware with an automatic benchmark that runs on the first Elektra execu-
tion. Based on the in this thesis developed heuristic function this automatic
benchmark could define a custom made heuristic function. The custom made
heuristic function could be stored in Elektra.

One search in Elektra can trigger a series of searches. The length of this series
of searches is tiny compared to the length of the benchmarked search sequences
in this thesis. An investigation could tell more about the performance of the
tiny series of searches when done with the OPMPHM.

7 Appendix

7.1 Appendix A

All of these charts show the individual number of components in the r-uniform
r-partite hypergraph (r) results. They depicts how many r-uniform r-partite
hypergraphs need to be constructed until an acyclic hypergraph is found. The x-
axis is the keyset size. The y-axis is the number of vertices factor in the r-uniform
r-partite hypergraph (c). The missing points are inaccurate measurement, where
at least one measurement reached the implementation limit of 10 tries to find
an acyclic r-uniform r-partite hypergraph.

This is the disastrous result of r = 2:

Figure 15: Result: Mapping Benchmark with r = 2

6

5

5

5

5

4

4

4

4

4

4

3

3

3

3

6

6

5

5

5

5

4

4

4

4

4

4

3

3

3

7

6

6

5

5

5

4

4

4

4

4

4

4

3

3

7

7

6

6

5

5

5

4

4

4

4

4

4

3

3

7

7

6

6

5

5

5

4

4

4

4

4

4

3

3

8

7

6

6

5

5

5

5

4

4

4

4

4

4

3

8

7

7

6

5

5

5

5

4

4

4

4

4

4

3

9

8

7

6

6

5

5

5

4

4

4

4

4

4

3

9

8

7

6

6

5

5

5

4

4

4

4

4

4

3

8

7

6

6

5

5

5

4

4

4

4

4

4

4

8

7

6

6

5

5

5

4

4

4

4

4

4

4

8

7

6

6

5

5

5

4

4

4

4

4

4

4

9

7

7

6

5

5

5

4

4

4

4

4

4

4

9

7

7

6

5

5

5

4

4

4

4

4

4

4

9

8

7

6

5

5

5

4

4

4

4

4

4

4

2.15

2.25

2.35

2.45

2.55

2.65

2.75

2.85

2.95

3.05

3.15

3.25

3.35

3.45

3.55

10 15 20 30 40 60 80 120160 240320 480640 9601280

Keyset size (n)

c

Each dot is the xn,2,c,0.995 quantile of 1, 600, 000 measurements.

The following chart depict the other number of components in the r-uniform r-
partite hypergraph (r) results. Each dot is the xn,r,c,0.995 quantile of 4, 800, 000
measurements.
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Figure 16: Result: Mapping Benchmark with r = 4
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Figure 17: Result: Mapping Benchmark with r = 5
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Figure 18: Result: Mapping Benchmark with r = 6
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Figure 19: Result: Mapping Benchmark with r = 7
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7.2 Appendix B

The x-axis is the keyset size. The y-axis is the time of the build in microseconds.
The gray line is the OPMPHM build time and the black line from dotted to
solid are the hsearch build times with the different loads.

41



Figure 20: Result: OPMPHM vs Hsearch on i7-3517U
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Figure 21: Result: OPMPHM vs Hsearch on 1800X
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7.3 Appendix C

7.3.1 Cases Hybrid Search Faster Result

The following charts depict the percentage of random scenarios where the hybrid
search is faster than the standalone binary search on different hardware. The
x-axis is the keyset size and the y-axis is the percentage of random scenarios
were the hybrid search is faster than the stand alone binary search. The three
black lines are the different hardwares.

Figure 22: Result: Cases Hybrid Search with 11 Bit History Register
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Figure 23: Result: Cases Hybrid Search with 7 Bit History Register
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Figure 24: Result: Cases Hybrid Search with 5 Bit History Register
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7.3.2 Hybrid Search Superior and Inferior Results

The following charts show the average percentage how much faster is the hybrid
search compared to the standalone binary search. The x-axis is the keyset
size. The y-axis is the average percentage how much faster the hybrid search is
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compared to the standalone binary search in the random scenarios. The black
lines represent the different hardwares.

Figure 25: Result: Hybrid Search Superior 11 Bit History Register
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Figure 26: Result: Hybrid Search Superior 7 Bit History Register
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Figure 27: Result: Hybrid Search Superior 5 Bit History Register
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The following charts exhibits the average percentage how much faster is the
standalone binary search compared to the hybrid search. The x-axis is the
keyset size. The y-axis is the average percentage how much faster the hybrid
search is compared to the standalone binary search in the random scenarios.
The black lines represent the different hardwares. There are missing points in
this figures, these keyset sizes had no inferior random cases.
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Figure 28: Result: Hybrid Search Inferior 11 Bit History Register
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Figure 29: Result: Hybrid Search Inferior 7 Bit History Register
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Figure 30: Result: Hybrid Search Inferior 5 Bit History Register
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