
Improving System Integration using a
Modular Configuration Specification Language

Markus Raab
Vienna University of Technology
Institute of Computer Languages

markus.raab@complang.tuwien.ac.at

Abstract
In today’s systems we often plug together configurable standard
components in a modular way. Most software, however, does not
specify its configuration in a way suitable for other software. The
aim of our configuration specification language SpecElektra is to
fill this gap. It allows us to externally specify the configuration
items of non-standardized configuration files. In SpecElektra we
assign properties that enable additional validations and transforma-
tions. As a result, we can safely and easily configure software at
run-time. The approach integrates standard software while retain-
ing its modularity. We demonstrate how high-level configuration
items help us to cope with changes in system-oriented goals.
Categories and Subject Descriptors D.2.12 [Software Engineer-
ing]: Interoperability
Keywords System Integration, Modularity, System-oriented goals

1. Introduction
In a world where systems get increasingly complex we take special
care to not miss ever-shifting system-oriented goals. Modularity
presents a well-established mechanism to cope with complexity.
Instead of building every system from scratch, we aim towards
configuring existing components in order to create new systems.

Most standard software does not consider to be part of an inte-
gral whole. Instead it often provide run-time configurability only
via their specific configuration files. We have to configure each
application individually. Such an endeavour can be complex and
error-prone. Configuration files use different syntax and software
to access them are written in different languages. Our aim for sys-
tem integration is to have options to tune the whole system.

As running example we will employ an embedded location-
tracking device. On this device we install the time synchronization
daemon ntpd. At startup ntpd considers a configuration file named
ntp.conf. Certain context changes require us to reconfigure ntpd.
Suppose the power-source of the device switches to battery. When
such a system-wide context changes, we want to modify many set-
tings in order to save energy. One of the possible settings to be
changed is the reduction of ntp-polling. We might directly com-
municate new settings via inter-process communication. To make
changes persistent, however, we need to change the poll settings

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the Owner/Author(s).

MODULARITY Companion ’16 March 14-17, 2016, Malaga, Spain
Copyright c© 2016 held by owner/author(s).
ACM 978-1-4503-4033-5/16/03. . . $15.00
DOI: http://dx.doi.org/10.1145/2892664.2892691

which are located in ntp.conf. Thus the more generic approach is
to change ntp.conf and notify ntpd to reread its configuration.

To elegantly deal with changing context the use of context-
oriented programming (COP) was proposed [6]. It enables modu-
larization of dynamically changing behaviours. The usage of COP,
however, is challenging if we want to work with unmodified stan-
dard software. Additionally, in COP we need to decide during im-
plementation which contexts we want to consider. We cannot di-
rectly apply COP-techniques, the focuses are too different. We want
to investigate how to postpone such decisions until system integra-
tion. Our goal is a language that externally specifies configuration.
By changes in the specification we adapt to system-oriented goals.

Currently, there are two major directions for run-time con-
figuration: (1) Some embedded and/or proprietary systems have
global registries. In this scenario every application interacts with
the whole configuration of the system. It poses the advantage of
very good integration capabilities. The downside is that all appli-
cations need to be rewritten to work with the global registry. (2) In
most systems every application has its own configuration files. Ev-
ery application has full control over every aspect of run-time con-
figuration access. So we have the extreme opposite: a fully modular
system without compromise. The specification of the configuration
happens within every application, e.g., using XSD.

With all advantages the fully modular approach has, it com-
pletely fails with one system-oriented goal: It gets practically im-
possible that an application has access to the configuration of every
other application. As a consequence applications do not access oth-
ers configurations for better integration at a large scale. Thus if you
want to configure a system you have to tinker with the configura-
tion of each application. Our vision is that a specification language
defines the configuration access. If done in a modular way it should
be able to fulfill today’s diverse requirements. Application specific
adapters are necessary to avoid a lowest common denominator.

According to our vision we propose the configuration specifi-
cation language SpecElektra. Specifications in it describe a global
key-database that mounts application-specific configuration files.
The aim is to integrate previously unrelated components via their
run-time configuration. For example, using a specification in which
the key-database integrates all the values of ntp.conf, we trans-
form the battery status present on the system to other values, in-
cluding one suitable for ntpd:

1 [battery/level]
2 check/enum = critical, low, high, full
3 [ntp]
4 mountpoint = ntp.conf
5 transform/batterytontp = battery/level maxpoll
6 [locationtracker]
7 transform/batterytotracker = battery/level

The specification language is semi-structured. The syntax used
in our examples resembles INI files. It only has two constructs:
Within [...] in lines 1, 3 and 6 we write keys that refer to
values, found in configuration files but not in the specification.
The other lines specify properties of the keys. Using the property
mountpoint (line 4), all key/values below [ntp] will be persisted
in the configuration file ntp.conf. The property check/enum (line
2) validates values of [battery/level]. The lines transform/*
in lines 5 and 7 describe two transformation properties. Because
of line 7 the configuration value of [locationtracker] is calcu-
lated from [battery/level]’s value. Functionality of properties
are implemented as plugins that process configuration during ac-
cess. The plugins sometimes facilitate COP techniques.

COP describes the current context by the combination of layers.
Each layer is associated with specific behavior at run-time. COP
demands a distinction of objects and context. Explicit layers make
developers more aware of the contextual situation. The gestalt of
the context obviously depends on the requirements. In our speci-
fication language every key can be interpreted as context. We can
easily connect the data in unanticipated ways to tackle new goals.

For example, we use the components of the example above in a
vehicle instead of a wearable device. Then the context of the polling
time would be different. The speed of the vehicle replaces the bat-
tery level as dominant context. When such a system-oriented goal
changes, we only need to rewrite parts of the short specification.
But we can continue to use the same standard software components
without modifications. Our only assumption is that applications are
configureable to reach the system-oriented goals. We do not assume
that options are specified or standardized in any specific way.

One novelty of the configuration specification language is that
it has nearly no built-in language constructs. Instead all language
features are negotiated with plugins at deployment time. This pa-
per contributes to the question of the interaction of system-oriented
goals and modularity. The problem is significant because applica-
tions often have unused options that would improve the system.

In Section 2 we describe how the configuration specification
language SpecElektra works. In Section 3 we discuss the perspec-
tives, and in Section 4 we evaluate the overhead. In Section 5 we
discuss related work, and finally in Section 6 we conclude.

2. SpecElektra
SpecElektra is a highly-modular configuration specification lan-
guage. Its main purpose is to specify configuration data and its
constraints for configuration problems [4]. It is different from other
configuration specification languages because: (1) there is hardly
any feature built in the language, (2) the specification is always
present on the target system, and (3) it also specifies the configura-
tion access. As other languages SpecElektra aims at ease of use.

We observe the presence of two modularity dimensions in most
systems: vertical and horizontal modularity. We begin by describ-
ing our observations. Later we explain how SpecElektra improves
modularity in both dimensions.

2.1 Vertical Modularity
Vertical modularity is the degree of separation between different
applications. If they all use the same configuration registry, we
would couple them tightly. For example, (see Figure 1) the appli-
cations gpsd and batteryd use the configuration library L1. A
configuration library fetches the configuration at startup. Thus we
cannot deploy gpsd or batteryd without L1. We want, however,
high vertical modularity: any component should be interchangeable
and the configuration framework should not interfere. If the appli-
cations and configurations coupling is low, we would have a high
degree of modularity.

Sp
ec

El
ek

tra

Key Database (Elektra)

gpsd

batteryd

A1

ntpd

A2

L1

P1

P3 P3

P2

L2

P1 P4

locationtrackerd

lt.conf

battery

ntp.conf
A3

Figure 1. Horizontal and vertical modularity of locationtracker
device. Boxes are applications, cylinders are configuration files, A?
are adapter libraries, L? are configuration libraries, P? are plugins.

SpecElektra provides three main mechanisms to improve ver-
tical modularity. The first mechanism is shown in Figure 1 with
ntpd. The application ntpd directly accesses its configuration file
ntp.conf using the library L2. Additionally, the configuration file
ntp.conf is accessible as specified via P1 and P4. The plugin P4
directly parses and generates ntp.conf and P1 acts as an filter.
Mountpoints permit us to integrate the configuration file ntp.conf:

1 [ntp]
2 mountpoint = ntp.conf
3 infos/plugins = P1 P4

In the above example, the values of ntp.conf are mapped into
the key [ntp] and its subkeys. A mountpoint establishes a con-
nection between configuration data in a configuration file and the
global key database. Plugins are pieces of code that share the same
interface. The specified plugins P1 and P4 are responsible for map-
ping ntp.conf into the global key database. Using mountpoints
the modularity is improved indirectly: we prevent that the appli-
cations directly access ntp.conf. Changes in keys below the key
[ntp], e.g. the key [ntp/maxpoll], are automatically reflected in
the file ntp.conf. Using links and transformations [9] we can even
avoid dependencies on the configuration structure.

We prefer the second mechanism used in locationtrackerd.
Here we use the adapter library A1. Adapter libraries provide the
interface the application needs. They either transform or directly
access the data structure from SpecElektra. A1 is directly included
and thus locationtrackerd is integrated in our approach with-
out extra steps. We favor adapters that facilitate code generation
because it guarantees that the configuration access code matches
the specification. The advantage of this (second) mechanism is that
SpecElektra always enforces all properties of the specification.

The third mechanism is shown on the example with L1. Sup-
pose this library would usually read the configuration file L1.conf.
Because A2 intercepts the system call “open”, L1 will actually
use SpecElektra when configuration is read. Then every call to
work with L1.conf will actually be redirected via adapter A2.
All applications using L1 (i.e. gpsd and batteryd) will partici-
pate, too. Most operating systems provide ways to intercept library
calls without recompilation, e.g., with ld.preload on Linux. Thus
gpsd, batteryd and L1 do not need any modifications.

As last example, the application ntpd uses the library call
getenv("NTPD_UPDATEINTERVAL"). A3 again is an adapter which
intercepts getenv()-calls. With A3 in place, ntpd actually re-
quests [getenv/NTPD_UPDATEINTERVAL] instead. Even though

ntpd is unmodified, it participates in a unified configuration sys-
tem. We conclude that SpecElektra has mechanism to achieve a
high degree of vertical modularity.

2.2 Horizontal Modularity
The horizontal modularity is the degree of separation in configura-
tion access code. A high degree of horizontal modularity allows us
to plug together any configuration access code. This modularity is
needed, because configuration access works different for every ap-
plication. E.g. some applications validate configuration extensively,
others use exotic configuration files. Our goal is to reuse configura-
tion access code nevertheless. For horizontal modularity SpecElek-
tra uses the pipes-and-filters pattern (see P1–P4 in Figure 1). The
specification abstracts from the assembling of plugins:

1 [getenv/ntpd_updateintervall]
2 check/type = long
3 rename/toupper = 1

The check/type property in lines 2 will load appropriate type
checker plugins. The property in line 3, will make sure that a
rename plugin will be loaded. Rename plugins make sure that
getenv within ntpd works with NTPD_UPDATEINTERVAL, al-
though the key is written lower-case in the configuration file. The
argument of the property rename/ toupper ensures that the string
getenv/ will not be converted. Nearly any set of plugins can be
combined for configuration access. We see SpecElektra provides a
good degree of horizontal modularity.

2.3 Properties and Beyond
Properties are an elegant way to specify keys. We only need to list
properties, and plugins are assembled automatically to ensure these
properties. For example, we can assign a new value conditionally:

1 [gps/status]
2 assign/condition = (battery/level > 'low') ?
3 ('active') : ('inactive')

Currently, the plugin “conditionals” is the only one that pro-
vides the property assign/condition. Thus the plugin “condi-
tionals” will be loaded during configuration access and it will
assign the value according to the condition in line 2 and 3.

One might wonder, how dynamically the system reacts, e.g.
turns off GPS, when the battery status changes. In SpecElektra,
different notification strategies are implemented with different plu-
gins. Thus we can make use of every mechanism to reread config-
uration files that applications provide. If applications do not listen
to any notification, we restart them.

Some functionality, however, is not related to a single key, but to
a mountpoint, or even globally. In these cases we need to manually
specify plugins (as done with P1 and P4 before):

1 [ntp]
2 mountpoint = ntp.conf
3 infos/plugins = augeas lens=ntpd.lns syslog

In line 2 we declare that the key is a mountpoint. In line 3 we
directly specify plugins needed for the mountpoint. We pass a con-
figuration to the so called augeas plugin. The plugin configuration
lens=ntpd.lns is the passed when the plugin is loaded at run-
time. A lens is a bidirectional program [1] that describes how the
syntax of the configuration file is mapped into our key database.
The plugin syslog will log every configuration change.

It is sometimes useful to include the same plugin several times
(P3 in Figure 1). For example, we want to encrypt the values of
the configuration file with different ciphers. If the default cipher is
AES and we first want DES, then AES:

1 [locationtracker/secret]
2 infos/plugins = crypto cipher=DES crypto

We see that SpecElektra also provides means for a more manual
specification to load plugins. This is necessary for situations where
properties are not related to individual keys. Using such mountpoint
properties (or global ones not described here) are useful to fulfill
cross-cutting concerns.

2.4 Contracts
A contract is a description of a plugin’s functionality. It comple-
ments to the specification. It describes not only what a plugin of-
fers but also the needs of the plugin. The plugin’s contract has some
overlapping but also different properties compared to the specifica-
tion. The main difference is that properties of the contract only refer
to the plugin itself, not to individual keys. Thus the contract does
not contain keys written in [...].

The most important part of the contract lists all properties the
plugin handles. E.g., a rename plugin lists rename/toupper,
rename/tolower as supported properties.

Another important property of the contract is the development
status. By weighting the labels we map the status to a number. For
example, the contract can contain infos/status = productive
tested memleak. Here the given status productive and tested
increases the assigned number, but not memleak.

Plugins sometimes require other plugins to work properly. To
avoid undesired direct dependencies between plugins, we use the
dependency inversion principle. For example, a plugin offers in its
contract infos/provides = rename and another plugin requests
infos/needs = rename. Then the dependency is fulfilled, even
when the developer did not consider that particular rename plugin.

The last concept needed for assembling plugins is their or-
dering. Its core principle is to list which plugins are not ad-
missible to be present when the plugin is loaded. They have to
be loaded earlier. For example, we would write in the contract
infos/ordering = rename to reorder the plugin so that the re-
spective plugin is inserted before rename.

2.5 Algorithm
We already mentioned that a particular property causes a specific
plugin to be loaded. But often many plugins are suitable to ensure
properties of keys. We now go into the details of how the algorithm
assembles all plugins needed for a configuration specification.

A specialty of SpecElektra is the negotiation for every property.
With the negotiation we decide which plugin is best suitable for a
specific property in SpecElektra. To select the best plugin out of
many, we use the status information from the contract:

1 Plugin findBestPlugin (prop) {
2 p = findPluginsThatOffer (prop);
3 if (p.empty()) throw NoPluginFound ();
4 sort (p, cmpBy ("infos/status"));
5 return p[0];
6 }

The algorithm in the line 2 finds all suitable plugins, e.g., those
which offer the property rename/toupper. In the line 4 we sort
the plugins by their development status as given by the contract
infos/status. We use the plugin with the highest ranking in line
5. We refrained from only having a “default” concept because we
want to avoid assumptions about availability of plugins. Our algo-
rithm always determine a best plugin. We also use the same algo-
rithm findBestPlugin (provide) for finding the best provider.

Every specification has potential to contain conflicting proper-
ties. For example, we can specify contradicting properties:

1 [getenv/NTPD_updateintervall]
2 rename/toupper = 1
3 rename/tolower = 1

It is unclear if NTPD_updateintervall should be transformed
to upper or lower case. The function hasConflict(props) im-
plements rules based on properties to detect such conflicts. Thus
the contract of plugins does not bother about conflicts.

For assembling the plugins we solve an instance of the configu-
ration problem [4]. We have given the contracts of plugins (domain
description) and the properties in the specification (specific require-
ments). We want the consistent, valid and irreducible configuration
of plugins. Given how we find the best plugins and detect conflicts
the algorithm is straight forward:

1 Mountpoint assemblePlugins(keys) {
2 plugins = {}
3 for (key : keys) {
4 if (hasConflict (allProperties (key)))
5 throw PropertyConflict ();
6 for (prop : allProperties (key)) {
7 p = findBestPlugin (prop);
8 plugins.addIfMissing (prop, p);
9 }

10 }
11 sort (plugins, cmpBy ("infos/ordering"));
12 return Mountpoint (plugins);
13 }

The algorithm iterates over all properties it finds in the specifica-
tion (line 6). For every specification entry, we find the best suitable
plugin. In line 7 we add it if the property is not handled already.
Because the framework makes plugins idempotent we accept sev-
eral plugins that handle the same property. Line 11 makes sure that
the plugins have no ordering violation for the pipes-and-filters.

We see that SpecElektra heavily relies on the concept of orches-
trating plugins by properties. Our strategy, especially the absence
of conflicts in contracts, leads to a simplification of the configura-
tion problem. With a constant number of plugins, we even find a
solution for all properties in a specification in linear time O(prop).

2.6 Generic Plugins
We say a plugin is generic, if its feature set is beyond what can be
described in a single contract. We identified two different types of
generic plugins. The first type of generic plugins accepts programs,
behavioral descriptions, or scripts as plugin configuration. They
allow solutions for different issues without a dedicated plugin for
each property. If the plugin’s configuration changes, the contract
can differ, too. For example, the generic plugin lua has the plugin
configuration script that points to a file containing a lua-script:

1 [locationtracker]
2 infos/plugins = lua script=batterytotracker.lua

Depending on the script, the behavior of the plugin can be
completely different. We have to be very careful when we think
about equality of plugins. Thus, SpecElektra requires an instance
name to distinguish generic plugin where the contracts differ.

The other type of generic plugins, uses compile-time condition-
als. Then the variability is already resolved in the target code. They
are useful for three purposes: (1) If you prefer performance to flex-
ibility, (2) during bootstrapping when we lack plugin configura-
tion [9], and (3) if we want to have different plugins with a very
high degree of code reuse. Every combination of differently de-
fined macros is a new compilation variant, with possibly distinct

contracts. For example, with a compilation variant we decide which
cryptography library should be used in the plugin crypto.

In conclusion, we have different types of generic plugins. One
type resolves variability early during compilation, the other at run-
time. This feature is contrasting to COP, because in COP we cannot
decide when variability is resolved.

3. Perspectives
In this section we will discuss the perspectives of SpecElektra
considering its modularity and system-wide goals.

Unified configuration access is the system-oriented goal to have
a single API to modify the configuration of the whole system.
SpecElektra directly provides a specification for a unified config-
uration access. This feature presents advantages, e.g., if a user in-
terface (UI) for system-wide configuration access is required. Sup-
pose we have the specification:

1 [battery/level]
2 check/type = long
3 check/type/min = 1
4 check/type/max = 100
5 description = The battery level in %

We immediately have the necessary information to generate UIs
that present the configuration nicely to users. In a project we imple-
mented a UI that was able to display the configuration of all sys-
tem’s components. Except for some issues with layouts, one can
even generate such UIs. Because of SpecElektra’s abstraction the
UI does not need any knowledge of concrete underlying configura-
tion storages.

Reusing standard components is a common goal for nearly every
modular system. Because SpecElektra provides vertical modularity,
applications do not need to be coupled to participate in the system.
A lightweight and useful solution is the integration of configuration
files using existing plugins:

1 [ntp]
2 mountpoint = ntp.conf
3 infos/plugins = augeas lens=ntpd.lns

With more than 50 plugins SpecElektra supports more than
150 different types of configuration files, e.g., JSON and XML.
Every application that directly modifies configuration files risks the
system integrity. Thus only using mountpoints does not provide full
control over configuration access.

A better form of integration of standard components is the
reimplementation of the application’s configuration API. We al-
ready implemented one such adapter for the getenv() call. We
achieved booting a Debian system where every getenv() call gets
intercepted and redirected to SpecElektra. For other applications,
SpecElektra provides adapters utilizing code generation.

We think that adapters are possible for any data structure and
API. We conclude that SpecElektra provides many practicable
ways to integrate unmodified applications.

For intra-application integration the unified configuration ac-
cess and integration of standard components is precondition. To go
further, we want the configuration of one standard component to
influence another standard component. We have developed several
plugins to achieve that goal. The core idea is that some keys are
not read from configuration files, but calculated dynamically. For
example, we want to derive the polling time:

1 [locationtracker/polling]
2 description = GPS polling time in seconds
3 transform/batterytotracker = battery/level

The property transform/batterytotracker makes sure
that the value [locationtracker/polling] is transformed to
a value suitable for [battery/level]. With lower battery, the
poll time slows down. Sometimes we prefer to use conditionals:

1 [gps/status]
2 assign/condition = (battery/level > 'low') ?
3 ('active') : ('inactive')

In this example, we will completely turn off GPS after we
passed a threshold. We see that these techniques help us to achieve
the goal to save battery, without the need to modify the applications.
In [9] we describe improvements of intra-application integration.

Cross-cutting concerns are often related to configuration access.
We want to demonstrate how SpecElektra handles a typical cross-
cutting concern: logging. For example, we want that our tracker
application logs every configuration change. Everything should be
logged twice, once remote with syslog and once locally. Because
we already call openlog() in our tracker-application, we do not
want the plugin to reopen the log. In SpecElektra we write:

1 [locationtracker]
2 mountpoint = lt.conf
3 infos/needs = syslog dontopensyslog= journald

With the specification above the tracker-application logs ev-
ery change to both syslog and journald. Note, that the property
dontopensyslog needs an = so that we know it is not a plugin, but
plugin configuration. We can easily add any code to handle cross-
cutting concerns. The only prerequisite to use some code as plugin
is to provide an entry point.

Plugin reuse: Sometimes cross-cutting concerns are complex.
Then we want to implement them using several plugins in appropri-
ate languages. Plugins can be written in any programming language
with bindings for SpecElektra. Currently, most plugins are written
in C and C++; others are implemented in Java, Lua and Python.

The logging example above with two logging plugins already
gives you an intuition of plugin reuse. Now we want to explore
one more situation where plugins even require the functionality
of another one. For example, suppose all shared files should be
encrypted. We need to compress the file to satisfy performance
criteria. A configuration file happens to be in the shared folder:

1 [locationtracker/shared]
2 mountpoint = /shared_folder/lt.conf
3 infos/plugins = compress crypto

Compression and encryption algorithms are both non-trivial and
not always used together. Instead of writing one plugin that imple-
ments both features we can make use of the pipes-and-filter pattern.
Then the crypto plugin uses functionality of the compress plugin.
We also can easily connect standard plugins along with plugins de-
veloped specifically for an application.

Fulfill changing system-goals: We already showed in previous
examples how we can facilitate configuration to improve battery
life. Now suppose the system-goal has shifted because we deploy a
location tracker in a vehicle. The battery is much larger, but now the
tracker resolution at high speed is a problem. Additionally, we want
the same embedded system to continue its work on smart phones
and wearable computing devices. We introduce a key that contains
the device information to cope with the different goals:

1 [device]
2 check/enum = 'wearable','smartphone','vehicle'

The basic idea is to introduce high-level configuration items
representing goals. From them, we calculate what it actually means
to fulfill the system-oriented goal:

1 [powersaving/gps]
2 assign/condition = (device != vehicle) ?
3 (battery/level) : ('full')
4 [gps/resolution]
5 assign/condition = (device == 'vehicle') ?
6 ('high') : ('low')

To change a goal we only need a single modification of one such
high-level configuration value. Embedded devices often even have
this knowledge detectable, e.g., written in EEPROM. Then we can
deploy identical images fulfilling diverse system-oriented goals.
Due to the possibility to change the specification during system-
integration we do not need to know all possible devices beforehand.

4. Evaluation
We benchmarked SpecElektra on a hp R© EliteBook 8570w using
the central processor unit Intel R© Core

TM
i7-3740QM @ 2.70GHz.

The operating system was Debian GNU/Linux Wheezy 8.2 with
the architecture amd64. We used the compiler gcc 4.9.2 with the
option -O2.

Vertical modularity: In this benchmark we want to evaluate the
overhead of vertical modularity. In particular, we benchmark the
cost of an increasing number of mountpoints, e.g., 2 mountpoints:

1 [benchmark/0]
2 mountpoint = /tmp/file0
3 [benchmark/1]
4 mountpoint = /tmp/file1

●

●

●

●

●

●

0.8

0.9

1.0

1.1

0
m

ou
nt

po
in

t(
s)

1
m

ou
nt

po
in

t(
s)

2
m

ou
nt

po
in

t(
s)

3
m

ou
nt

po
in

t(
s)

4
m

ou
nt

po
in

t(
s)

5
m

ou
nt

po
in

t(
s)

6
m

ou
nt

po
in

t(
s)

7
m

ou
nt

po
in

t(
s)

8
m

ou
nt

po
in

t(
s)

9
m

ou
nt

po
in

t(
s)

T
im

e
[s

]

Figure 2. Access time with 1000 keys with 100000 iterations and
an increasing number of mountpoints. Note that the high number
of iterations means that the relative time is very low.

In Figure 2 we see a linear correlation between time and number
of mountpoints. This is not surprising because reading and writing
to a higher number of files is expected to need more time. Zero
mountpoints means that everything is written into the root mount-
point. We conclude that the overhead for vertical modularity is ac-
ceptable, even with frequent configuration changes.

Horizontal modularity: In this benchmark we want to evaluate
the overhead of horizontal modularity. We consider the read and
write performance. We use the iterate plugin that iterates over all
keys and search for the property iterate in every key. We increase
the number of mounted plugins in one mountpoint:

1 [benchmark]
2 mountpoint = /tmp/file
3 infos/needs = iterate#0 iterate#1 ...

In a nutshell no overhead could be measured. The parsing of the
configuration file is by far the dominant factor. This statement does
not change with an increasing number of keys or properties. We
conclude that SpecElektra imposes no reason to avoid modularity.
If useful, every feature should be implemented as a separate plugin.

5. Related Work
Software product lines are a holistic alternative, even able to
quickly adapt to new goals [7]. They are, however, not able to
integrate standard components as easily. Instead they require to
rewrite software if it was not based on produce lines before.

Chiba et al. [2] argues that we sometimes do not need to extend
syntax for improved modularity. We agree and similar to their
concerns-browser, SpecElektra can be seen as hierarchical data.

Lenses [1] ease the support of many different configuration files.
With augeas SpecElektra has a plugin that facilitates lenses. Unfor-
tunately, augeas does not provide the level of configuration abstrac-
tion as often needed. It also has limitations supporting hierarchical
nested data. E.g., XML or JSON are syntactical alternatives to the
INI format we used in this paper. If preferred, SpecElektra allows
us to use XML or JSON for its specification.

Configuration management (CM) aims at specifying configura-
tion centrally for all nodes [3]. Bypassing CM to directly change
configuration files is considered as anti-pattern. For smartphones
and other personal computers it is, however, often desirable to di-
rectly reconfigure the devices. SpecElektra supports such local con-
figuration changes while still enforcing the specification.

In context-oriented programming [6, 8] we typically need to
decide in the implementation what the context is. Thus we think it
is sometimes less flexible when the system-oriented goal changes.

Other configuration specification languages [4, 5] have sophis-
ticated support for validation. To the best of our knowledge, how-
ever, no specification languages consists entirely of plugins. Thus
in other configuration specification languages the user is bound to
the features the configuration specification language has and cannot
extend it easily. Additionally, other configuration specification lan-
guages are typically not deployed on the systems. Thus they cannot
be modified effortlessly to change system-oriented goals.

6. Conclusion
Configuration specification languages are a sweet spot: In SpecElek-
tra modularity helps system developers to reach system-oriented
goals in many ways. We simply specify properties and the tool
automatically assembles plugins that enforce the properties. Mod-
ularization in the configuration access helps applications to include
application-specific validation. Then we achieve an improvement
of the validation of the whole system. SpecElektra also allows us
to externally handle many different cross-cutting concerns related
to configuration for the whole system.

By benchmarks we showed that the overhead of configuration
integration is acceptable. Even better, the impact of increasing the
number of plugins is not measurable.

The benefits of the approach are:
(1) allows validation and documentation of configurations,
(2) avoids lowest common denominator by specific plugins,
(3) enables a unified way to access configuration,
(4) has plugins with compile-time and run-time variability, and.
(5) allows us to introduce high-level configuration options that
influence system-oriented goals.

More importantly, a modular configuration specification lan-
guage allows us to integrate different unmodified applications.
Then we can achieve system-wide goals by changing high-level
configuration items. Using plugins we easily can propagate the
high-level items to concrete configuration. Because all applications
are specified at one location, we can easily refer to any option.

SpecElektra is used in practice, and the latest release 0.8.15
can be downloaded freely from http://www.libelektra.org.
The specifications are semi-structured in any syntax supported by a
plugin. They are directly available on the target system and enable
unmodified applications to be integrated.

Our contributions are:
• observations and improvements for vertical and horizontal

modularity for configurable components,
• an implementation and benchmarks for a fully-modular config-

uration specification language, and
• examples for interactions between modularity and system-

oriented goals.
These contributions are significant. Up to now such integration

endeavors were less modular. Thus they could not cope with re-
quirement changes as easily.

As further work we plan to better integrate context-awareness
and to conduct larger case studies.

Acknowledgments
I would like to thank Franz Puntigam, Andreas Falkner, Harald
Geyer, and the anonymous reviewers for a detailed review of this
paper. Additionally, many thanks to all people contributing to Elek-
tra.

References
[1] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt.

Boomerang: resourceful lenses for string data. In POPL ’08: Proceed-
ings of the 35th annual ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 407–419, NY, USA, 2008.
ACM. ISBN 978-1-59593-689-9. doi: http://doi.acm.org/10.1145/
1328438.1328487.

[2] S. Chiba, M. Horie, K. Kanazawa, F. Takeyama, and Y. Teramoto.
Do we really need to extend syntax for advanced modularity? In
Proceedings of the 11th annual international conference on Aspect-
oriented Software Development, pages 95–106. ACM, 2012.

[3] T. Delaet, W. Joosen, and B. Vanbrabant. A survey of system con-
figuration tools. LISA’10, pages 1–8. USENIX, 2010. URL http:
//dl.acm.org/citation.cfm?id=1924976.1924977.

[4] G. Friedrich and M. Stumptner. Consistency-based configuration. 1999.
[5] S. Günther, T. Cleenewerck, and V. Jonckers. Software variability: the

design space of configuration languages. In Proceedings of the 6th
Workshop on Variability Modeling of Software-Intensive Systems, pages
157–164. ACM, 2012.

[6] T. Kamina, T. Aotani, H. Masuhara, and T. Tamai. Context-oriented
software engineering: A modularity vision. In Proceedings of the 13th
International Conference on Modularity, MODULARITY ’14, pages
85–98, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2772-
5. doi: 10.1145/2577080.2579816. URL http://doi.acm.org/10.
1145/2577080.2579816.

[7] A. Nascimento, C. Rubira, and F. Castor. Arcmape: A software prod-
uct line infrastructure to support fault-tolerant composite services. In
High-Assurance Systems Engineering, 2014 IEEE 15th International
Symposium on, pages 41–48, Jan 2014. doi: 10.1109/HASE.2014.15.

[8] M. Raab. Global and thread-local activation of contextual program exe-
cution environments. In Proceedings of the IEEE 18th International
Symposium on Real-Time Distributed Computing Workshops (ISOR-
CW/SEUS), pages 34–41, April 2015. doi: 10.1109/ISORCW.2015.52.

[9] M. Raab. Sharing software configuration via specified links and trans-
formation rules. In Technical Report from KPS 2015, volume 18. Vi-
enna University of Technology, Complang Group, 2015.

