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Abstract

With the help of configuration settings—usually stored in configuration files—applications
are highly adaptable. Modern systems give us detailed information about the context the
system is situated in. We define context as every information relevant for configuration
settings, for example, the location, available hardware, the network settings, settings of
other applications, etc.

Today, configuration settings and the context are not connected. Adaptations of configu-
ration settings to better fit the context happen manually—often in complicated interfaces
and without proper feedback on errors. Using a questionnaire survey and a source code
analysis, we reveal obstacles why applications rarely account for context: Developers do
not have context information readily available and dislike dependences to software that
would give them the information.

We aim to overcome these problems by introducing a novel system-level configuration
specification language, which specifies the relation between context and configuration
settings. Including more context into configuration settings improves usability and de-
creases misconfiguration. Our configuration specification language orchestrates frontends
and backends for unified, context-aware access to configuration settings. We introduce a
frontend (an API) that maps via code generation the configuration specification language
to context-aware variables. We use it to enable context adaptations in dynamic scopes
as suggested by context-oriented programming. The configuration specification language
modularizes the system into plugins that build up backends. The modularization mitiga-
tes the previously mentioned applications’ problems of missing context information and
unwanted dependences. We implemented different language constructs for the modular
configuration specification language to validate our approach.

We evaluate the implications of the novel modular abstractions in the configuration
specification language in-depth. We discuss emerging tools, debugging support, intro-
spection, and development time. Furthermore, we measure the overhead caused by the
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backends and compare solutions, implemented in the frontend and backend, with the
result that the overhead in modular backends is small. Despite the context awareness,
the frontend enables read access to configuration settings with the run-time efficiency
of native variables. Because it is unrealistic that every application gets rewritten to use
such type-safe frontends, we demonstrate different ways to connect legacy applications
with our backends. With 16 well-known standard applications, such as Firefox, we show
the feasibility and practicality of increasing context awareness of configuration settings
without modifying any source code.



Kurzfassung

Software ist mit Hilfe von Konfigurationseinstellungen, welche üblicherweise in Konfi-
gurationsdateien gespeichert werden, hochgradig adaptiv. Moderne Systeme beinhalten
bereits detaillierte Informationen, in welchem Kontext sich das System gerade befindet.
Wir definieren Kontext als jede Information relevant für Konfigurationseinstellungen,
zum Beispiel der aktuelle Ort, vorhandene Hardware, Netzwerkkonfigurationen, Konfigu-
rationen anderer Programme, etc.

Heutzutage sind Konfigurationseinstellungen und Kontext nicht verbunden. Adaptionen
von Konfigurationseinstellungen, wie besseres Anpassen an den Kontext, werden manuell
durchgeführt – oftmals in komplizierten Schnittstellen und ohne hilfreiche Rückmeldun-
gen bei Fehlern. Mit einer in der Arbeit durchgeführten Umfrage und Quelltextanalyse
erkannten wir Ursachen dafür, warum Programme derzeit selten Kontext berücksich-
tigen: Entwickler haben Informationen über den Kontext nicht bequem verfügbar und
vermeiden Abhängigkeiten zu Software, welche die Informationen bereitstellen könnte.

Wir zielen darauf ab, diese Probleme durch eine systemnahe Konfigurationsspezifika-
tionssprache, welche die Beziehungen zwischen Konfigurationseinstellungen und Kon-
text beschreibt, zu lösen. Der Hintergedanke ist, dass die Berücksichtigung von Kontext
in den Konfigurationseinstellungen die Benutzerfreundlichkeit erhöht und fehlerhafte
Konfigurationseinstellungen reduziert. Unsere Konfigurationsspezifikationssprache orche-
striert dabei Frontends und Backends, um den Zugriff auf Konfigurationseinstellungen
zu vereinheitlichen. Wir führen ein Frontend (eine Programmierschnittstelle für Entwick-
ler) ein, welches mittels Quelltextgenerierung die Konfigurationsspezifikationssprache
in kontextsensitive Variablen abbildet und dabei Kontextsensitivität in dynamischen
Sichtbarkeitsbereichen ermöglicht. Die Konfigurationsspezifikationssprache modularisiert
Quelltexte in Form von Plugins, mit deren Hilfe die Backends aufgebaut werden. Da-
durch werden die zuvor genannten Probleme von fehlenden Kontextinformationen in
Applikationen und unerwünschten Abhängigkeiten gemindert. Um unseren Ansatz zu
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validieren, haben wir mehrere Sprachkonstrukte einer modularen Konfigurationsspezi-
fikationssprache implementiert.

Wir haben die Implikationen unserer neuartigen modularen Abstraktionen der Konfigu-
rationsspezifikationssprache ausführlich evaluiert. Dabei diskutieren wir Funktionalität
zur Introspektion, neu entwickelte Werkzeuge, Analysen zur Fehlerbehebung und Ent-
wicklungszeit. Ebenfalls messen wir den durch Backends verursachten Mehraufwand und
vergleichen Lösungen, implementiert als Frontends und Backends, mit dem Ergebnis, dass
Mehraufwände in modularen Backends gering sind. Trotz Kontextsensitivität ermöglicht
das Frontend lesende Zugriffe auf Konfigurationseinstellungen mit der Laufzeit-Effizienz
von native Variablen. Da es unrealistisch ist alle existierenden Applikationen auf solche
typsicheren Frontends umzuschreiben, demonstrieren wir verschiedene Möglichkeiten, wie
bestehende Applikationen ebenfalls an unsere Backends angebunden werden können. Mit
16 bekannten Standardapplikationen, wie etwa Firefox, zeigen wir, dass die Kontext-
sensitivität der Konfigurationseinstellungen auch ohne Quelltextänderungen verbessert
werden kann.
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CHAPTER 0
Introduction

“Begin at the beginning,” the King said gravely, “and go on till you come to
the end: then stop.”

— Lewis Carroll, Alice in Wonderland

This book examines context while applications access their configuration settings. Con-
text includes all factors that influence an application’s configuration settings, for example,
information about geographical locations, installed packages, hardware configurations,
network connections, and configuration settings of the system. If software better adapts
its behavior according to its context, we call it more context aware [5]. Applications
tend to be adaptable by configuration settings. Context-aware configurations are
configuration settings in accordance with their context.

Many behavioral aspects are not fixed at compile-time but are determined later by read-
ing configuration settings. Applications access configuration settings from configuration
files, environment variables, command-line options, etc. at run-time. We subsume these
configuration sources under the term execution environments. Fetching configuration
settings from the execution environments is called configuration access.

Previously, concerns about context mainly have been addressed with workarounds and
ad hoc solutions from both developers and system administrators. Here we address these
concerns in a comprehensive and structured way. The book describes a holistic and unified
context-aware configuration access. We aim at better abstractions at the system-level to
improve user experience.

1
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We write explanations and definitions of terms in italics. We bootstrap from minimal
explanations in this chapter to definitions later. For example, dissociation of configuration
settings to input and sensor data is given in Definition 1.1 on page 28. The index on
page 317 contains page numbers for all these terms.

In the rest of this chapter, we discuss the challenges, the goal, the solution, the structure,
research questions, and the contributions of the book.

0.1 Challenges in Configuration Access

Configuration access appears to be straightforward: Applications need to read the execu-
tion environments and prepare these configuration settings to be accessed in the source
code. System administrators, however, experience many surprises around configuration
access on a daily basis. Naïve ways to access configuration, which are typically used, are
not safe and do not take context into account.

In the systems community, problematic configuration settings are well-known as mis-
configurations [21, 272, 303, 307]. Misconfigurations are a major cause of system fail-
ures [202, 214, 301]. As studies show [179, 202, 238, 307], system administrators need
to spend much time to fix misconfigurations. In this section we describe challenges we
tackle in this book.

0.1.1 Stakeholder’s View

Three different stakeholders participate in configuration accesses. Each stakeholder has
different interactions and problems with configuration settings and their context [234]:

Developers implement configuration access in their applications and do not foresee
every possible context influencing the application. They need to provide interfaces
for configuration settings to be used by other stakeholders. For them, context is
mainly the system the application is running on.

System administrators prefer direct, precise, and concise ways to change configura-
tion settings. Therefore, their typical interface to configuration settings are low level,
such as configuration files [26, 27, 114, 287, 310]. For them, context is mainly the
system’s settings and other applications’ settings. Because constraints on configura-
tion settings concerning context tend to be too complex for manual consideration,



0.1. CHALLENGES IN CONFIGURATION ACCESS 3

system administrators easily miss considering some context. They wish to get con-
cise error messages if configuration settings are invalid, for example, conflicting
with context.

End users expect applications to be automatically adapted to their context. Further-
more, they want to customize applications to their special needs, which can be
different in different contexts. For end users, context is everything relevant for their
interactions with applications.

Although the stakeholder’s views are different, the same consequences for configuration
access apply: Context puts constraints on the configuration settings, and it is problematic
if these constraints are violated.

0.1.2 System’s View

Yin et al. [307] discovered that “a majority of misconfigurations (70.0 %∼85.5 %) are
due to mistakes in setting configuration”. The other 14.5 %∼30 % of “misconfigurations
are caused by software compatibility and component configuration”. A main contributor
to misconfigurations are configuration settings clearly violating syntactic or semantic
rules (38.1 %∼53.7 %). Such errors can be avoided with configuration validation. Con-
figuration validation, or validation in short, rejects invalid configuration settings by
checking syntactic and semantic rules. Validation is present in end-user interfaces, but
hardly in the interfaces system administrators use. For system administrators, validation
only occurs while restarting the application—putting the system at a high risk.

The system administrator’s interfaces are confusing, too [26, 27]. System administrators
easily confuse syntax because applications have many subtle differences in configuration
file formats [27]. Even more traps for system administrators are hidden behind the
interfaces. Xu et al. [304] showed that system administrators are not to blame. Instead
configuration access code in the applications is leading to unexpected behavior and
crashes. Only in 7.2 % to 15.5 % of cases error messages pinpoint the error [233, 307].

Example 0.1. OpenLDAP has the configuration setting listener-threads. Its doc-
umentation says: “The default is 1 and this is typically adequate for up to 16 CPU cores.
The value should be set to a power of 2.” OpenLDAP’s documentation does not mention:

• how to correctly use this setting for more than 16 CPU cores,



4 CHAPTER 0. INTRODUCTION

• that slapd will reduce the value of listener-threads to the next number that
is “a power of 2”, nor

• that slapd will crash with values above 16 [304].

Such behavior is a trap for system administrators. N

Now that we have established that applications are vulnerable against misconfiguration,
we elaborate on the challenges in providing configuration validation. Problems of the
application are located in the configuration access, i. e., along the data flow of configu-
ration settings from the configuration parser to their use in the application. Xu et al.
[304] investigated the configuration access in seven applications. The results show that
configuration settings are not considered as input to the application and not validated
systematically. Even worse, sometimes there are checks and transformations that lead
to surprises in behavior. We will subsume all descriptions of the configuration access
as configuration specification. Their study shows that the available implementations
of configuration specifications are woven into the application’s source code. As a result,
configuration specification cannot easily be separated from the source code nor moved to
a separate tool. Applications validate their settings only at startup, or even later [306].
Checking at startup is already too late: Failures at startup can cause outages.

0.1.3 Context and Beyond

Currently applications, which have configuration validation, typically only check consis-
tency within their own settings. They hardly include checks with respect to their context.
In particular, system-wide settings or others applications’ settings are often prone to
mismatch. Context specifications describe context relevant for configuration settings.
As we will see later, context specifications are an important part of configuration specifi-
cation. For example, context information about network settings and installed packages
are easily available within the network and package managers. Such context information,
however, is not readily available within applications. This implies that configuration
validation within applications fails to include such context.

A survey from Xu and Zhou [303] gives insights about system approaches to tackle
misconfiguration. It shows (by absence of the topic) that most research does not include
context of configuration settings, despite empirical research that shows its importance:
“a large portion (46.3 % to 61.9 %) of the parameter misconfigurations have perfectly legal
parameters” (i. e., configuration settings) [307]. If the configuration settings are valid
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from the view of the application but still invalid in the system, it means that some
requirement or context influencing the application was not considered.

Example 0.2. People and their devices often change between different workplaces. Their
computers need various network settings where each of them requires different proxy and
printer settings. If the user changes workplace, the proxy and printer settings need to be
changed according to the network settings. Without changing the proxy, the browser will
not be able to connect to the Internet. Configuration settings that are perfectly valid in
one situation are invalid in another situation. N

Not all misconfigurations with valid settings are due to context unawareness: The second
half are violated requirements such as performance, privacy, or security. These factors
decide about suitability of configuration.

Example 0.3. MySQL has the configuration setting AutoCommit: “But when the user
set[s] this parameter to be True, she was not aware of the performance impact” [307]. In
this example, the performance is a disregarded requirement. N

Applications can avoid misconfigurations if their configuration specification would take
context and requirements into account. In some cases, we can avoid any manual interac-
tion and calculate default values from context information. We see such software rarely
because of the applications’ inability to inquire context. System administrators would
benefit if the configuration specifications use such context information or at least tell
if they are inconsistent.

Usability improvements due to context is not limited to system administrators but
applies to all users. Khalil and Connelly [155] conducted a study where all users found
context-aware configuration (very) useful. They learned that in 89 % of cases the mapping
between activities and settings was consistent for individual users. In the study, context-
aware configuration improved satisfaction, even if deduced settings sometimes were not
appropriate. For example, a participant stated:

“I like how it changes state without you having to tell it to. I always forget
to turn my cell [off] in class and turn it on after.”

Despite these long-known advantages of context-aware configuration, developers hardly
implemented them in their applications. Before this work, it was not even known why
developers failed to implement these techniques.
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0.1.4 Configuration Integration Problem

Developers find it challenging to consider configuration settings and specifications if
they belong to other applications. Inter-woven implementations of configuration spec-
ifications, missing context information within applications, and different configuration
file formats are symptoms of the same problem. Figure 0.1 shows: If n applications read
configuration settings and specifications of every other application and the system, we
need at least n ∗ (n+ 1) ways to extract configuration settings and specifications. The
same applies to tools for system administrators. It is unfeasible to take the hurdle to
implement access to all configuration settings and specifications. We call the problem
configuration integration problem1.

Application 1 Application 2 Application 3

Operating System

Configuration
settings and
specifications
of 1

Configuration
settings and
specifications
of 2

Configuration
settings and
specifications
of 3

Figure 0.1: Current situation: For 3 applications and 4 sources of configuration settings
and specifications, we need 3 ∗ 4 = 12 configuration accesses.

1Based on the name given by Keidel et al. [152] “IDE portability problem”.
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Because of the configuration integration problem, applications do not use configuration
settings and specifications from other parts of the system. Even applications, for that
other configuration settings are highly relevant, often have no awareness of this context.
The configuration integration problem hinders us to create better tools badly needed by
system administrators. Furthermore, the configuration integration problem restrains the
context awareness of applications, reducing usability.

Example 0.4. OpenLDAP is unable to determine the value for listener-threads
because it lacks context information about the number of CPUs present in the system.N

0.2 Methodology, History, and Goals

The aim of the book is to find a system-oriented, computer-language-based solution to
the configuration integration problem. In this section we discuss the methodology, history,
gaps, goals, and limitations.

0.2.1 Methodology

Before we start designing a formal language, we must understand precisely what we
want to express in this formal language. We did an in-depth gap analysis and conducted
empirical studies to better understand the configuration integration problem. From these
unveiled requirements we started to design a framework and a formal language.

We used the methodological framework “theory building from cases” [80, 83] with different
methods embedded:

1. an observation report, to learn about fundamental requirements,

2. a questionnaire survey, to learn about goals of potential users, and

3. a source code analysis, to validate statements of potential users.

To countervail weaknesses of individual methods, we mixed them in a way to minimize
the threats of validity of our overall results [138]. There is a huge gap between empirical
studies of problems and software requirements. We tried to fill it with experience, but it
would be unrealistic to claim that there is no room for improvements in the requirements.
With the unveiled requirements, we redesigned and reimplemented a framework, called
Elektra, and evaluated it.
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0.2.2 Elektra

In this book we present the framework Elektra that consists of several parts:

1. The library LibElektra is a configuration library, which means it provides access
to configuration settings. It already existed before the book was started.

2. The modular configuration specification language SpecElektra is the main con-
tribution of this book.

3. Several tools and frontends are built on top of LibElektra. In this book we will
mostly discuss the code generator GenElektra.

Figure 0.2: Elektra’s Logo.

LibElektra is a library that aims to
provide unified access to configuration
settings and specifications as found in
the execution environment. It works
similar to a virtual file system but is
based on key-value pairs. LibElektra
enables introspection for both config-
uration settings and specifications. Developers use the configuration specifications to
externally specify their configuration access, validations, and default value calculations.
Plugins, implementing configuration access, enforce these configuration specifications.
The idea of the plugins is to provide system-level dependence injection [233].

0.2.3 Elektra’s History

The development of LibElektra started in 2004, sponsored by IBM at that time. The
author of this book joined in the same year. A community, called Elektra initiative,
gathered around the source code repository of LibElektra. Initially the initiative only
aimed at the straightforward idea to unify application programming interfaces (APIs)
for configuration access. From its beginning, Elektra was free/libre2 and open source
software (FLOSS). LibElektra started by introducing an API with many language
bindings. The bindings were contributed by different people who felt an API, to unify
configuration settings, is important.

2The word “free” here is interpreted with the meaning of the word “libre”. The term FLOSS is
designed for the purpose of not taking political position between free software and open source software,
see also https://www.gnu.org/philosophy/floss-and-foss.en.html.

https://www.gnu.org/philosophy/floss-and-foss.en.html
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The idea of introducing a configuration access API was not new: Most proprietary
software systems already had similar APIs for a long time. Nevertheless, it was clear
that there was no portable configuration library available to be used for typical FLOSS
applications. For example, the configuration libraries X/Q/GSettings, KConfig, dconf,
plist, and Windows Registry are tied to their respective platforms.

Grave mistakes in initial versions led to several redesigns of the API. Due to that, Elek-
tra lost many FLOSS users. Despite different efforts to change the situation, rather
companies than FLOSS software developers used Elektra. Focus was often at patching
applications that led to quality problems in LibElektra itself. Unfortunately, redesigns
had new flaws and unnecessary features were introduced. In particular, developers started
implementing a daemon, which did not offer advantages but introduced many complica-
tions. Reimplementing security features of the operating system frustrated developers,
who then left. The Elektra initiative was in a deep crisis that escalated in 2006 when
IBM canceled their sponsoring. On the positive side Elektra was well-known and
had supporters [233].

In 2007 the author of the book continued the work on Elektra mostly alone and thus
progress was at a slow pace. In 2012 the author did a major cleanup and in 2014 the
author restarted the initiative. More than ten students supervised by the author started
to work on topics related to Elektra for their Bachelor’s and Master’s theses. The
author of the present book started to lead this revived Elektra initiative. The newly
formed initiative is referred as “we” in the following paragraphs about history. Additional
contributors, early adopters, and package maintainers also joined the effort. A separation
of what was done by the author follows much later in Section 6.4.1 after we had explained
all parts of Elektra in detail.

The new lead shifted the goals towards a more technical solution to mitigate the configu-
ration integration problem: We focused on inventing new abstractions other configuration
access APIs did not have. We oriented towards the highly competitive market of config-
uration libraries. As unique selling point our abstractions forced less ideology onto users
because Elektra avoids prescribed configuration validation techniques or configuration
file formats. In a first step, this was achieved by introducing different backends, chosen
by users at run-time. An implementation providing only a single backend for the whole
system proved to be too limited: Individual applications cannot customize their backends
for their own needs. We implemented a layer similar to a virtual file system, which enables
applications and system administrators to mount configuration files [236]. Furthermore,
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dependences in the core made Elektra unattractive. To solve this problem, we modu-
larized Elektra [225] so that users can select exactly the features they need [233].

Such changes made part of the software more complicated. At first, we provided too
little documentation for newcomers to grasp the abstraction mechanisms [225]. Then
we started to put efforts into rebuilding the community by overhauling documentation,
introducing more regression tests, writing tutorials, and designing a new website. We
succeeded by other FLOSS initiatives willing to use Elektra, and Elektra being
packaged for many distributions [233].

0.2.4 Scientific Gaps

Now back from the history of Elektra to this book. When the book started in 2013
(shortly before reviving Elektra) the author searched for scientific gaps to be solved to
explain the previously mentioned phenomena. The following scientific gaps refer to the
situation at that time.

The research topic of context-aware applications is well-known [24, 248]. Context-oriented
programming is a novel programming paradigm that aims at programming-language
support to implement context-aware applications [17, 132, 145, 151]. It allows us to
describe context, in which the application is situated in, as state of the application.
Context-oriented programming languages did not consider the execution environment
and did not have desired performance characteristics.

Configuration accesses did not have support for context awareness. Naïve ways to
implement context awareness led to the problems mentioned earlier. Accounting
context in configuration access differs in some aspects from earlier work on context-
oriented programming:

1. We cannot start sensing context within the application before it starts up. Never-
theless, the configuration access at startup must be efficient.

2. We shall not assume developers to know every possible context during development.

3. We shall not assume developers to rewrite large-scale software for context-aware
configuration.

4. Improved simplicity for configuration access is essential: For developers the status-
quo is a viable option.
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Because of these reasons, earlier work of context-oriented programming could not
be applied. There was no concept telling us how context-oriented programming can
be used without large overhead [235]. Neither did the previous approaches permit
multi-threading [226] nor multi-process [231] configuration access. No previous surveys
about context awareness for configuration access were done. Therefore, despite developing
Elektra since nearly 10 years, we were unaware about some expectations, goals,
and challenges.

Configuration specification languages [34, 96, 112, 127, 178] did not have configuration
access in their scope. The configuration specification languages did not have capabilities
for local configuration validation of configuration files [228]. Furthermore, they were
usually not as extensible as needed for the needs of the many different applications. For
example, they did not have a practical way to be extended with application-specific
run-time checks. We found a scientific gap for a configuration specification language that
is easy to use for simple tasks but can be extended to domain-specific, complex tasks.

Configuration libraries did not have an abstraction for programmable configuration
access [230, 233]. Research was needed to investigate the solution space. Another scientific
gap was the missing way to specify requirements used at configuration access [230].
Previous solutions had specifications that generated configuration files causing problems
in a bidirectional work flow.

Behrang et al. [30] found ill-tested applications in which errors caused by co-evolution will
not be automatically detected by a test suite. Instead configuration settings, that were
in fact not used by the application anymore, were still presented to users. Jin et al. [139]
found configuration settings present in the source code but not shown to the users, for
example autoadmin.append_emailaddr in Firefox. We had to find a configuration
specification language that eliminated such inconsistencies.

Holland et al. [134] defined futzing to denote “tinkering or fiddling experimentally with
something.” Instead of having a straightforward way to achieve a goal, the user needs
to use trial-and-error methods. With no-futz computing Holland et al. [134] mean
“that futzing should be allowed, but should never be required.” Many situations, however,
required system administrators to futz, for example, to reverse engineer configuration
access code to know the state of configuration settings [134].

Last but not least, no method existed that allowed applications without any modifications
in the source code to have context-aware configuration access [232]. Or more generally,
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there was no way to apply context-oriented programming in another way than rewriting
applications.

0.2.5 Goals

Let us elaborate on our aim to solve a computer-language design problem with the goal
to improve on the configuration integration problem. Elektra is a vehicle to study
candidate techniques whether they enable developers to build a futz-free configuration
system. To validate if Elektra mitigates the configuration integration problem, we
define the following goals. As precondition, we must understand the requirements by
looking at the developer’s challenges:
Goal (Requirement). A goal of this book is to unveil requirements by empirically
analyzing how applications access configuration settings and why developers programmed
it that way.

With these requirements, the next goal can be tackled:
Goal (Abstraction). We create an abstraction by designing the configuration specifi-
cation language SpecElektra. This abstraction shall enable users to reduce effects of
the configuration integration problem by unifying configuration access, simplifying config-
uration validation, and enabling context awareness.

Then we want to implement the abstractions defined in SpecElektra within the Elek-
tra framework. With this better abstraction, we grapple the next goal:
Goal (Context). We aim at a run-time system that automatically chooses the best
suitable configuration settings with regard to the context. We want to enable users to
consistently manipulate and introspect which configuration settings an application receives.
Making changes in configuration settings shall be futz-free.

If new contexts and requirements arise, we ideally only need to change configuration
settings and specifications—without any need to modify the source code of applications.
The best run-time system is of little benefit if it is used incorrectly, thus we need to fulfill:
Goal (Frontend). We aim at a context-aware, type-safe frontend that mitigates prob-
lems unveiled before. The effort to let applications participate with this run-time system
shall be kept at a minimum.

0.2.6 Limitations and Assumptions

In configuration management [58, 137] taking control over execution environments is
an essential part. We call such necessary modifications in the execution environments
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producing configuration settings. Configuration management tools produce configura-
tion settings and applications consume configuration settings. While the discipline of
producing configuration settings is well researched since a long time [45], we focus on the
consumption of configuration settings and specifications in applications from its source
to its target:

Source is the execution environment, such as configuration files.

Target is a set of variables used within APIs of the applications.

Nevertheless, configuration access is needed for both consuming and producing configu-
ration settings. Ideally, the same implementation of configuration access is used for both
the applications and the configuration management tools.

We will barely discuss the actual management of configuration settings—only as far as
we need it to interface with the outside world. Our work is limited to local applications
consuming configuration settings, i. e., on single nodes, computers, or devices. Local
configuration settings are always necessary, because nodes need at least to know where
they can fetch further configuration settings. For most setups the limitation to a single
node is irrelevant because configuration management already solves the problem to
distribute configuration settings to all nodes in a network.

In the spirit of infrastructure as code, we assume that system administrators want to
use automation techniques for configuration management. We expect that they want to
work systematically, and not by futzing [134].

We will only evaluate applications that have FLOSS licenses. Only FLOSS developers
gave us the permission (via the license) for their source code to be analyzed and improved.
This implies that other researchers have better possibilities to validate our findings by
repeating them [37, 289].

Because previously discussed problems around misconfiguration prevailed in most soft-
ware intractably since decades, it would be unrealistic to promise that a single piece of
software will fix all problems. Instead we can only provide a framework and language
that enables developers to improve over the current state. Developers will still be in
charge for writing high-quality configuration specifications. We can only offer them a
more suitable language to express themselves. With correct specifications, however, we
might be able to exclude some kinds of misconfigurations completely.
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0.3 Solution

As depicted in Figure 0.3, we use Elektra to improve on the configuration integration
problem. Based on the results of Goal Requirement, we will introduce an operating-
system-independent and application-independent representation for configuration settings
and specifications.

Elektra

Application 1 Application 2 Application 3

Configuration
settings and
specifications
of 1

Configuration
settings and
specifications
of 2

Configuration
settings and
specifications
of 3

Operating System

Figure 0.3: Wanted situation: Elektra as abstraction layer for configuration access of
applications. We only need 3 + 4 = 7 configuration accesses.

Applications need to participate in the abstraction layer. Therefore, we have to pursue
Goal Frontend to give developers attractive solutions.

As stated in Goal Abstraction, we propose to unify configuration access via LibElektra.
To avoid losing any flexibility or modularity, we introduce the configuration specification
language SpecElektra, which enables applications to specify individual needs.
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From our studies we found that fixed configuration specification languages are too limited
to serve different domains [34, 96, 112, 178]. Instead we propose a modular configuration
specification language that allows individual domains and applications to define their own
extensions for the modular configuration specification language. Only application-specific
languages are suitable to specify configuration access for specific needs of individual
applications. As shown in Figure 0.4, the modular configuration specification language is
implemented by a chain of plugins. Plugins support customized configuration validation
and applications-specific functionality.

S
pe

c
E
le

k
t
r
a

configuration
file

Elektra

core

system con-
figuration

context

Application 1

Application 2

Application 3

F1

F2

F3

backend

LibElektra

GenElektragenerate

backend

backend

P1 P2 P3

P4 P5 P6

P7 P8 P9

P0

Figure 0.4: LibElektra consists of backends that are built up by plugins. Plugins contain
application-specific or generic source code. F? are frontends, which can be generated by
GenElektra as shown for F1. The other arrows indicate data flow of configuration
settings and specifications. P? are plugins nested in backends, and in this example, with
P0 being part of every backend.

As main use case, extensions to the configuration specification language are used to
build customized configuration access. It is up to the designer of the extensions to put
focus on context awareness or configuration validation. In our book, our extensions focus
towards context awareness, as described by Goal Context. Because of SpecElektra’s
modularity and extensibility, Elektra supports specific requirements how to validate
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or derive configuration settings, without adding complexity to applications not needing
such language constructs.

Example 0.5. Applications with a complex module system need a new language con-
struct that is implemented using a constraint solver [97] to find optimal instantiations
for the application’s modules. N

To demonstrate the usefulness of the modular configuration specification language Spec-
Elektra, we designed and built several language extensions with focus on context-
aware configuration. Together with Elektra, which enables every application to access
configuration settings of the system and any other application, we leverage more context
for configuration. SpecElektra can be seen as a glue language that is neutral to both
programming languages and execution environments.

SpecElektra shall fully enable developers to specify all relevant parts of configuration
access. Relevant parts include validity, transformation, context awareness, etc.

Example 0.6. To solve the problems of Example 0.1 on page 3, we specify:

1 [slapd/threads/listener]

2 check/range:=1,2,4,8,16

3 context:=/slapd/threads/%cpu%/listener

4 default:=1

5 description:=One thread is adequate for up to 16 CPU cores.

6 type:=long

Instead of calling the configuration setting listener-threads, we give it a unique
name, written in []. The name makes the configuration setting and specification ac-
cessible in the whole system. We use the hierarchy separator / that gives us flexibility
when configuration settings are extended. The other lines, which use :=, are properties
of this configuration specification. All properties together fully specify access to this
configuration setting. Line 2 describes that only 5 values are valid, avoiding surprises and
crashes. Line 3 specifies that the configuration setting shall be contextually dependent
on the number of CPUs available in the system. The string %cpu% is a placeholder that
is replaced with the current number of CPUs by a plugin. We can create a mapping from
the number of CPUs to the respective configuration values. The resulting configuration
value of this mapping then utilizes all CPUs. If the calculation fails, for example, because
the number of CPUs is unknown on that system or no mapping is available, we use the
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default value, which is 1 (line 4). The last line specifies the data type for code generation
with GenElektra. N

Overall, Elektra aims at creating a better abstraction of local configuration access
for applications. The abstraction mitigates the configuration integration problem and
enables users to program local configuration access for their needs. This novel way of
programming empowers developers, system administrators, and end users to:

1. ensure validity of configuration settings in terms of the context,

2. calculate default values honoring the context, and

3. enable introspection of the resulting configuration settings and specifications.

The enriched context awareness and improved configuration validation capabilities will
be facilitated to exclude the possibility of some kinds of misconfiguration.

We claim that with such a simple specification language, accessing configuration set-
tings and specifications for any participating application improves the goals Abstraction,
Context, Frontend, and the requirements unveiled in Goal Requirement. As a result
of the context awareness, we improve usability: Applications will have more context-
aware configurations.

0.4 Structure, Research Questions, and Contributions

After stating the main question and the overall contributions we will walk here chapter
by chapter through the thesis to clarify research questions, contributions, and structure.

The main question of the book is:

RQ 1. Why is current FLOSS configuration access rarely context aware and how can
we improve on the situation?

Raab [226, 227, 228, 229, 230, 231, 232], Raab and Barany [233, 234], Raab and Puntigam
[235] contributed answers to the question. RQ 1 is both a design and research challenge:

1. research the challenges in context-aware configuration access,

2. solve the design problem, i. e., find the best candidate to tackle the challenges, and
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3. research the implications of the design we have chosen and evaluate if it improves
on the configuration integration problem.

The main contribution of this book are improvements on context awareness for configu-
ration access, resulting in more context-aware configurations:

• We enable software to be more context aware via their configuration settings [227].

• We enable developers and system administrators to improve context awareness
without a change of their programming language and, with some limitations, without
any change of the applications’ source code [232].

• We improve introspection and debugging of configuration access. Our contributions
are steps towards a no-futz system [134].

• We analyze the performance situation of configuration accesses and suggest simple
but effective optimization techniques [235].

• We improve abstraction and modularization using a modular configuration specifi-
cation language that supports context-aware configuration [230].

• As contribution to the FLOSS ecosystem, Elektra is available as free software
at: https://www.libelektra.org.

0.4.1 Terminology and Background

We establish terminology and background in Chapter 1. We surveyed literature in mis-
configuration, configuration specification languages, context-oriented programming, and
context-aware configurations, answering the following research questions:
RQ 2. What is configuration, context, and context-aware configuration?
RQ 2.1. What are the viewpoints of context-aware configuration?

Contribution 1. We consistently establish terminology, viewpoints, and background for
context-aware configuration. At least three viewpoints, i. e. sensors, users, and time, con-
stitute the distinction between ordinary and context-aware configurations.
RQ 2.2. Which configuration specification languages are suitable to improve configura-
tion access of FLOSS applications?

Contribution 2. Despite conducting a systematic, large-scale literature survey, we did
not find any configuration specification language that focused on the configuration inte-
gration problem.

https://www.libelektra.org


0.4. STRUCTURE, RESEARCH QUESTIONS, AND CONTRIBUTIONS 19

0.4.2 Relevance to the Community

While there is generally no doubt about the presence of many problems surrounding
misconfiguration, the analysis of their details proves to be difficult and is still ongoing.
We pioneered new aspects, framed as the configuration integration problem, mainly
ourselves. In Chapter 2, we describe how we unveiled these challenges. We report on
a large-scale source code analysis, a questionnaire survey, and Elektra’s community
experience, answering the question:

RQ 3. Why do FLOSS applications lack context awareness and configuration validation
for configuration settings and what are the challenges in providing them?

For the empirical source code analysis we classified 2,683 call sites of configuration
accesses in 16 real-world applications encompassing 50 million lines of code. Additionally
a questionnaire was shown to 672 persons, 286 of these persons started to answer, 162 of
these persons completed the questionnaire, and 116 persons handed their email addresses
to be contacted by us afterwards [233].

Contribution 3. We found many different problems causing the described symptoms
and collected requirements for potential solutions.
RQ 3.1. Which problems in configuration access are observed while developing FLOSS
with state-of-the-art techniques?

Contribution 4. We observed different maintenance problems such as duplication and
inconsistencies of configuration accesses and settings.
RQ 3.2. What is the current state of configuration access in FLOSS?

Contribution 5. We found that different types of execution environments are equally
popular and unveiled details about why the decision, which one to use, is often arbitrary.
RQ 3.3. Which proportion of configuration accesses is already context aware or can be
made so without any source code changes?

Contribution 6. We learned that developers are striving to support context awareness.
In other cases, configuration accesses were used as if they were context aware, even though
they are not. We found that such configuration accesses provide potential for run-time
adaptations without modifying the source code of the applications.

In the following sub-questions from RQ 3.3, we mainly looked at the configuration access
API getenv. We expected getenv to be widely adopted because of its standardization.
We present the adoption rate of getenv and show that non-context-aware configuration
accesses exist in the source code of applications:
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RQ 3.3.1. What are the usage patterns of getenv invocations in the source code of
popular applications?

Contribution 7. In a source code analysis of 16 FLOSS applications we found that a
particular kind of configuration accesses, namely the getenv API, is used pervasively in
2,683 call sites [234]. It is inevitable that in many of these places the context is forgotten:
we found confirmed cases.

We have to show that these configuration accesses are used in a way exploitable for
run-time adaptations:

RQ 3.3.2. How often is getenv repeatedly used at run-time?

Contribution 8. We found getenv invocations to happen extensively across all stud-
ied applications. Many getenv invocations happen repeatedly and can be exploited for
improving context awareness.

Putting the pieces of Chapter 2 together, we compiled a list of requirements to improve
on the configuration integration problem:

RQ 3.4. What are the challenges and requirements in providing configuration access
for context-aware configuration?

Contribution 9. Overall, Chapter 2 contributes towards a better understanding of the
problem and unveils the first list of empirically founded requirements for context-aware
configuration access.

0.4.3 Elektra

In Chapter 3, we formalize a model of Elektra’s central parts. Elektra introduces a
novel form of abstraction yielding context-aware configuration.

Contribution 10. Chapter 3 contains the first formalization of a framework to access
context-aware configuration. It includes a simple proof for eliding an instantiation of
misconfiguration, namely missing configuration settings.

Different from Chapter 3, the next two chapters 4 and 5 will elaborate on why this model
fulfills the requirements and how the abstractions work in practice.

0.4.4 Frontends

Frontends are the parts of configuration accesses that are compiled into applications. Ev-
ery application accessing configuration settings needs some kind of frontend. At minimum
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the frontend consists of configuration access API invocations, at maximum applications
include everything found in configuration libraries. In Elektra, frontends are minimal
or generated with GenElektra.

Most developers include source code within their applications that implements config-
uration access. Configuration transformations and validations within these frontends
are an important factor of the configuration integration problem. In Chapter 4, we dis-
cuss how we simplify frontend code with context-aware APIs, answering the following
research questions:

RQ 5. Which concepts are needed for context-aware frontends to fulfill the requirements
as unveiled in Chapter 2?
RQ 5.1. What is the design space for context-aware frontends?
RQ 5.2. Which implementation technique for implementing context-aware frontends
has the best trade-off for time versus space?
RQ 5.3. How can we improve on the usability of context-aware frontends if being used
concurrently from several threads?
RQ 5.4. How can we share context between applications?

Contribution 11. We establish a context-aware frontend that:

1. fulfills the requirements unveiled in Chapter 2 and integrates context-oriented pro-
gramming with the execution environment,

2. has zero overhead for read access even if used in multi-threaded applications, and

3. guarantees some properties of configuration specifications, improving on the config-
uration integration problem.

0.4.5 Backends

Backends are all parts of configuration access that are not part of the frontends. Our
implementation of the backends is LibElektra. Different to the frontends, the backends
are shared among all applications in a system.

In Chapter 5, we will investigate parts of the configuration integration problem that
cannot be solved by frontends. In particular, problems that involve several applications
written in different programming languages need a solution within the backends.

RQ 6. Which concepts are needed for context-aware backends to fulfill the requirements
as unveiled in Chapter 2?
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RQ 6.1. What is the design space for abstractions of context-aware configuration in
backends?
RQ 6.2. How can we enable context awareness in backends without support from fron-
tends?
RQ 6.3. Which abstractions retain and improve modularity of configuration access in
FLOSS applications?
RQ 6.4. Which techniques enable applications to become more context aware without
any changes in the source code?

Contribution 12. The main results in Chapter 5 are:

1. Using simple specifications, Elektra provides programmable backends fulfilling the
requirements unveiled in Chapter 2.

2. Abstractions enable us to keep the current modularity of FLOSS applications, and
even extend it for configuration access.

3. Elektra allows legacy applications to become context aware without any source
code modifications.

4. It is possible to share configuration settings, specifications, and contexts across the
whole system.

0.4.6 Implications and Open Topics

Even though each individual part of our implementation is lightweight because of Elek-
tra’s modularity, altogether we propose a rather heavyweight, system-oriented abstrac-
tion. One must carefully consider whether the advantages outweigh the risks.

In Chapter 6, we will consider the implications Elektra has on the FLOSS ecosystem.
The implications are complex and sometimes, not surprisingly, beyond the problems we
initially wanted to tackle. We will reflect on experiences with users and case studies:

RQ 7. What are the risks and implications of introducing Elektra?
RQ 7.1. Which risks and implications does Elektra have for administrating configu-
ration settings?

Contribution 13. A unified interface for configuration settings brings control to the
system administrator. On the downside, system administrators need to learn Elektra’s
concepts. We demonstrate that our solution is applicable to a variety of use cases. We show
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that Elektra is not only feasible, but also practical and seamlessly supports debugging
and introspection of configuration settings and specifications.
RQ 7.2. How does Elektra influence risks of development and time effort if used in a
large real-world project?
RQ 7.3. Which features are elegantly realizable in Elektra to configure non-trivial
embedded systems?

Contribution 14. We were able to use Elektra within several large real-world and
embedded projects successfully. Due to Elektra’s extensibility and due to reuse of already
existing components, developers saved time. On the downside, some additional complexity
needs to be mastered. SpecElektra enables us to defer decisions, reducing some risks.
RQ 7.4. How can we improve debugging support of context-oriented programs?

Contribution 15. We present debugging techniques that deal with additional flexibility
introduced by context awareness.
RQ 7.5. What are the risks and implications on security, safety, and quality in systems
using Elektra?
RQ 7.5.1. What are the source code metrics of Elektra and who develops Elektra?
RQ 7.5.2. What are the implications of Elektra on misconfiguration?

Contribution 16. In Chapter 6, we demonstrate the practicality and generality of our
solution by porting different applications to Elektra. We cannot claim the resulting
systems to be always more secure and free of misconfiguration. Nevertheless, we argue that
some classes of misconfiguration get much more unlikely with Elektra. Some classes
of misconfigurations would only be possible because of bugs in the implementation and
not due to operator mistakes. Furthermore, we argue that a centralized implementation
improves on quality, reliability, and security. We are positive that Elektra raises the
bar for future configuration libraries.

0.4.7 Evaluation

In Chapter 7, we conduct benchmarks and measure further software characteristics in
applications using Elektra, answering the research question:

RQ 8. Which software characteristics change if Elektra is applied?
RQ 8.1. What are the performance characteristics for applications specifically pro-
grammed for Elektra?
RQ 8.1.1. How much can we improve the performance of configuration access using
context-oriented programming?
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Different from non-context-aware applications, context-aware applications need to track
all context changes occurring in the system. Thus we focused our investigations to mea-
suring overhead of context changes.

RQ 8.1.2. What is the overhead of context changes in an embedded, multi-threaded
use case?
RQ 8.1.3. What is the cost of Elektra’s individual operations?
RQ 8.1.4. How is Elektra’s resource utilization of hard disk storage?
RQ 8.1.5. What are the performance trade-offs towards high-level abstractions for
context changes?
RQ 8.1.6. What is the overhead of high-level abstractions for context changes in em-
bedded scenarios?

The contribution of RQ 8.1 is:

Contribution 17. All overheads are either constant or increase linearly in execution
time. Although some high-level abstractions have considerably more overhead, even context
changes every few milliseconds have little impact.
RQ 8.2. What are the considerations to implement a feature in the frontends versus in
the backends?

Contribution 18. While there is a difference in overhead, we nevertheless recommend
implementing virtually all features—except thread-safe, dynamically-scoped, context-aware
configuration access APIs—in backends. Only then the features can be interpreted dynam-
ically and can be easily shared between applications in different programming languages.
RQ 8.3. What is the overhead of Elektra’s modular abstractions?

Contribution 19. The overhead does not give a reason to avoid modularity.

One of the main contributions is that completely unmodified applications (concerning
the source code) can use Elektra. Our assumption is that applications already have
configurable behavioral variations. The basic idea is to have a run-time system that
computes which behavior variations shall be active to match the context. We strive to
answer the research questions:

RQ 8.4. What are the characteristics of a system in which context-unaware software
was made more context aware without any modifications in the source code?
RQ 8.4.1. How many getenv invocations can be exploited to improve context aware-
ness without any modifications in the source code?
RQ 8.4.2. How can we practically make applications more context aware without any
modifications in the source code?
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RQ 8.4.3. What overhead occurs in applications intercepted by Elektra?

RQ 8.4.4. What is the performance implication that occurs on context changes?

The main contributions of RQ 8.4 and its sub-questions are:

Contribution 20. We collected profound evidence that Elektra improves context
awareness in FLOSS applications even though we did not change a single line of source
code in the respective applications [234]:

1. No evaluation of context-aware applications was conducted before using such com-
plex, large, and popular applications [234]. The contributions are steps in the effort
of understanding the software-engineering perspective of context-aware configuration.

2. In a practical case study, with focus on Web browsers, we improved context awareness
for flexible workplaces. We conduct a software-engineering process in which we
systematically improve context awareness without any source code modifications.

0.4.8 Related Work

In Chapter 8 we will discuss related work. As we will see, state-of-the-art techniques as-
sume that applications need to be rewritten in architectures unusual for FLOSS. We avoid
this assumption and investigate in methods that can be realized for legacy applications.

RQ 9. Why does related work not solve the configuration integration problem?

0.4.9 Conclusion and Future Work

Our work showed that it is feasible and practical that a high-level configuration spec-
ification language unifies configuration access and mitigates the configuration integra-
tion problem. In Chapter 9, we will conclude the book with a discussion about the
achieved goals. In this light, we will elaborate on perspectives left open as future work.
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Finally, we give a summary of the value our line of research has for the stakeholders:

Developers get better frontends that enable them to directly work with variables that
contain context-aware configuration. With this higher level of abstraction, they
do not have to care about configuration validation and context awareness within
the application’s source code. Another main contribution to developers is Spec-
Elektra that allows them to define valid, context-aware configurations more
concisely without bringing further dependences in the application’s source code.

System administrators get better tooling that allows them to introspect and change
configuration settings without any syntactic hurdles and futzing. SpecElektra
empowers them to understand and improve the validations and context awareness
on a system level. Our main contribution to system administrators is better user
interfaces that make some kinds of misconfiguration much more unlikely. Miscon-
figuration gets rejected earlier with better error messages.

End users mainly benefit from having more context awareness in applications. Our
main contribution to end users is that Elektra enables them to personalize every
configuration setting for every context.



CHAPTER 1
Terminology and Background

If you’re a baker, making bread, you’re a baker. If you make the best bread in
the world, you’re not an artist, but if you bake the bread in the gallery, you’re
an artist. So the context makes the difference.

— Marina Abramovic

In this chapter, we introduce terms, elaborate on the already mentioned terms, and
discuss the background of our work. We will use the terms in the way as used in the
introduction and also as used by the cited papers, unless we say otherwise. We will answer
the research question:

RQ 2. What is configuration, context, and context-aware configuration?

1.1 Configuration

The execution environment is information outside the boundaries of each currently
running process [59]. The operating system introduces these boundaries. Controlling the
execution environment is essential for configuration management [58, 137], testing [285,
292], and security [105, 170, 213, 260]. For our considerations, the most important parts of
the execution environment are configuration files, environment variables, and command-
line options [235].

An application programming interface (API) defines boundaries on source code
level. Better APIs make the execution environment easier and more uniformly accessible.

27
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Free/libre and open source software (FLOSS) is software from which the source
code can be studied without limitations. In particular, FLOSS guarantees that source
code can be (0) executed, (1) studied, (2) shared, and (3) published with or without
modifications [268]. FLOSS initiatives1 are communities behind FLOSS.

Modifications in the execution environment change the run-time behavior of config-
urable applications. We are not aware of any relevant FLOSS application that is not
configurable, for example, even hello, cat, and echo can be configured.

While file systems have APIs with specified behavior since decades [192, 256], access
to the execution environment is reimplemented differently within every programming
language or even application.2 Some parts of the execution environment cannot be influ-
enced by other applications after the program has started.3 Other parts of the execution
environment can be changed during run-time and as such are subject to inter-process
communication.4

Definition 1.1. A configuration setting, or setting in short, fulfills these properties:

1. It is provided by the execution environment.

2. It is consumed by an application.

3. It consists of a key, a configuration value, and potentially metadata. The configu-
ration value, or value in short, influences the application’s behavior.

4. It can be produced by the maintainer, user, or system administrator of the software.

A configuration file is a file containing configuration settings. For example, a Web
server configuration file includes many configuration settings such as port=80 and
address=127.0.0.1. Their configuration values are 80 and 127.0.0.1, respectively.
Other information in the configuration file is metadata for the configuration settings
(such as comments). This book is only concerned about configuration settings but not
about other forms of configuration. For example, we configure a computer by assembling
its parts, but this is not configuration settings.5

1We avoid the term FLOSS projects because a project has by its definition a fixed end date.
2 With the notable exception of environment variables, where configuration access is standardized.
3For example, environment variables and command-line options.
4For example, the file system and shared memory.
5Unless we talk about an application that assembles computers.
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There are different viewpoints of configuration, for example, configuration as activity [254],
decision process [244], or task [265]. In this book, we will interface with such activities. But
for us only the result of such activities is of importance, i. e., the configuration settings.

In the literature many synonyms for configuration settings exist. User preferences [139]
and customization [8] stress that users make the change although that might not
always be the case. Variability points [112, 186, 194, 286, 288, 291] aim at describing
the capability of software to adapt its behavior. Derivation decision [60, 64] puts
the decisions to make and not the result in focus. Configuration parameter [10,
307] is easily confused with other kinds of parameters. Configuration item [13] or
configuration option [238, 309, 310] are sometimes not applicable, for example, “proxy
option”, or “language item”. Configuration data [137] is often used in the context of
programmable gate arrays and has a different meaning in that domain. We will avoid all
these synonyms in the rest of this book, except if we need the term for the distinguished
meaning as described here.

From the application’s point of view configuration settings are indistinguishable from
other input/output data. What are input/output data for one application, are configura-
tion settings for another application.

Example 1.2. Let us consider a Web server. The following discussion is only valid from
the Web server’s perspective, for a browser it would be different. The Web server’s address
and port clearly are configuration settings. Web server requests clearly are not settings.
The contents of the pages delivered are potentially influenced by settings. Users have
server-side settings stored, for example, languages-specific settings. If the data is stored
in cookies, however, it is not a configuration setting because cookies are sent within
every request. In our terminology, Apache’s configuration file .htaccess6 contains
configuration settings even though it is located next to data files. N

Configuration Access

Configuration access is the part of every software system concerned with fetching and
storing configuration settings from and to the execution environment. There are many
ways to access configuration [139, 157, 304]. Configuration access APIs are APIs that
enable configuration access. Within the source code the configuration access points
are configuration access API invocations that return configuration values.

6It provides configuration files on a per-directory basis.
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Example 1.3.

1 char * getenv (const char * key);

2 int main()

3 {

4 getenv ("PATH");

5 }

The forward declaration on line 1 specifies the configuration access API getenv. In
line 4 we have a configuration access point. N

Configuration access happens at various points in time throughout deployment and run-
time [13]. Kang et al. [147] distinguish between compile-time, load-time, and run-time
configuration access. We will use more elaborate distinctions:

Implementation-time configuration accesses are hard-coded settings in the sou-
rce code repository. For example, architectural decisions [120] lead to impl-
ementation-time settings. Often developers decide that configuration access
shall be postponed, leading to the other points in time below.

Compile-time configuration accesses are configuration accesses resolved by the
build system while compiling the code. Similar to implementation-time con-
figuration accesses, run-time lookups are not necessary and compilers can
optimize away not-executed paths. Different from implementation-time, the
build process also considers the execution environment outside the source
code repository. This technique is often discussed along with software product
lines [188, 286]. The implementation techniques range from special-purpose
programming languages, generated code, and definitions substituted by prepro-
cessors. Because avoiding complexity in the build system is rarely a pursued
goal, the number of such configuration settings can be extremely large in
FLOSS [211]. Nevertheless, these settings are hardly used by non-maintainers
because changes require recompilation. Systems providing compile-time set-
tings usually provide alternatives. For example, although Linux has many
preprocessor directives, loadable kernel modules with parameters7 (next to
other techniques) enable us to set nearly all configuration settings at later
points in time.

7They were added to Linux in 1995, and around 2000 modules were used everywhere in Linux.
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Deployment-time configuration accesses are configuration accesses while the
software is installed. Techniques that do configuration access solely during
deployment are used rarely in FLOSS. For example, in Debian GNU/Linux
the installation procedure of alternative tools changes symbolic links so that
the favorite tool is preferred.

Load-time configuration accesses are configuration accesses during the start of
applications. The application accesses the execution environment only while
initializing but does not synchronize its in-memory configuration settings
with the execution environment later. For example, accesses to environment
variables and command-line options are load-time configuration accesses.

Run-time configuration accesses are configuration accesses during execution not
limited to the startup procedure. To trigger configuration access at run-
time we usually have to notify the application. Then the application rereads
its execution environment and updates its in-memory configuration settings.

We focus on run-time configuration accesses because it is straightforward to avoid config-
uration accesses to reoccur at a later point of time.8 Considering run-time configuration
accesses in applications that do not support them already, however, usually implies
rewriting code. Furthermore, the user’s decision about a configuration value can always
be earlier than the point in time the configuration access happens but not vice versa.

1.1.1 Libraries

Configuration libraries provide implementations for a configuration access API.

Abstractions

It is an old idea to use an API to abstract from irrelevant details when accessing configura-
tion settings. The first interface, that is still commonly in use, is char *getenv(const

char *name). It was first standardized in 1986 with 4.3BSD and is included in the C89
standard.

The essential operations for configuration libraries are those to get and to set configura-
tion settings in two different ways: transient and persistent. The APIs for environment
variables only provide transient access, i. e., changed configuration settings are lost after
restart. For persistence, serializers transform the transient data structures to a byte

8By ignoring notifications that the configuration settings have been changed.
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stream to be written into configuration files. They have other drawbacks in their abstrac-
tion, for example, the environment is easily corrupted by directly accessing environ.

Other examples of standard APIs are:

• long pathconf(const char *path, int name),

• long sysconf(int name), and

• size_t confstr(int name, char *buf, size_t len).

These APIs are less generic because they only allow us to request values from a predefined
list. But such APIs are safer: Typos in the constants to be used for the name are caught
by the compiler.

Based on these first steps, the next generation of APIs provided persistence, too. These
libraries usually originated from applications and are often dedicated to special-purpose
configuration settings. This often lead to some specialties, such as function names, that
indicate the original application. For example, xf86HandleConfigFile parses the
XF86Config configuration file (now called xorg.conf).

Later, FLOSS developers introduced dedicated, general-purpose configuration libraries.
They filled the main gap that was often left by libraries written for specific applications:
They were able to persist configuration files and not only to parse them. For example, Java
Properties and the Universal configuration library parser (libucl) are such libraries.

A configuration source is an entity containing configuration settings. For exam-
ple, configuration files, command-line options and environment variables are configu-
ration sources.

Another fundamental abstraction introduced by configuration libraries is cascading
lookup. Cascading lookup allows users to merge different sources of configuration set-
tings in the following way: If a specific configuration setting is missing in one configuration
source, we continue the search in other configuration sources. For example, cascading
lookup was used to “abstract annotation and XML-based configuration sources” [199].

Yet another abstraction handles several configuration sources of different configuration
file formats in a unified way. Both the Apache Commons Configuration [95] and Zend
Config framework [277] convert to a common data structure. The solution of Nosál and
Porubän [199], Porubän and Nosál [218] extends this idea by using a meta-model and a
declarative translation specification.
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Configuration File Formats

At any point during the invention of the abstractions mentioned above, in parallel, devel-
opers invented many configuration file formats. Passwd might be the first configuration
file format that has documentation still available9. After 10 more years, the number
of configuration files suddenly began to explode. Both UNIX (for example, hosts) and
DOS (for example, CONFIG.SYS in DOS 2.0) invented one configuration file format
after the other. In the early history, UNIX preferred comma-separated value (CSV) file
formats (for example, next to passwd: fstab, inetd, and crontab) but DOS started with
key-value formats. Then INI got a popular configuration file format across all operating
systems. Evard [87] evaluated UNIX systems and found 58 important configuration files
with up to 45 revisions each (4.6 mean, 2 median). He says: “These configuration files
are a good area of study because they are relatively simple but can lead to complex issues.”
Later popular configuration file formats include XML [264], JSON [62], and YAML [32].

Semi-structured data is a representation of irregular, implicitly-structured data [3].
In particular, it allows data to be missing, which is not possible in structured data. It
became clear that some forms of semi-structured data are better suitable than others if
configuration files are serialized. Siméon and Wadler [264] describe two properties:

Self-describing means that from the configuration file alone we are able to derive
the correct internal representation.

Round-tripping means that if a file is serialized and then parsed again, we end
up with an identical internal representation.

Older formats, such as S-expressions [184] fulfill these properties. Many popular formats,
such as XML, do not possess these properties [264].

A property of configuration libraries is the conservation of all metadata found in the
configuration files. Most configuration libraries have limitations in this property. For
example, they do not preserve comments and white spaces.

The configuration library Augeas [177] systematically avoids loss of metadata and ambigu-
ities in round-tripping using lenses. Lenses are designed in a way that losing information
causes extra effort [41]. Furthermore, instead of separating the parser and the serializer,
a lens as sole specification is sufficient. Because lenses are interpreted from up and from

9It was already part of the original UNIX Programmer’s Manual http://man.cat-v.org/
unix-1st/5/passwd from 3rd November, 1971.

http://man.cat-v.org/unix-1st/5/passwd
http://man.cat-v.org/unix-1st/5/passwd
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down, they are called bidirectional programs. The current implementation, however, does
not provide:

• the level of abstraction as often needed because some (structural) properties of
configuration files leak through [36],

• configuration access APIs for applications since it is only intended to be used by
system administrators,

• useful error messages on parse errors, and

• support for some popular formats such as YAML (type-safe lenses are limited to
regular expressions).

Despite these limitations lenses are an important puzzle piece to provide support for
non-standard legacy configuration files. Augeas’ ability to completely preserve all white
spaces is not achieved by other configuration libraries.

Many configuration libraries are already included within the core libraries of program-
ming languages. For example, Java provides java.util.Properties, and Python
has ConfigParser. Because of the availability, such already included libraries are the
most popular ones. If not included, successful configuration libraries are often specialized
to some niche. For example, fontconfig allows system administrators to configure
available fonts on the system and performs specialized convenience functionality such as
font name substitution.

Most likely more configuration file formats than programming languages exist.10 Some
of them were hyped and then were already forgotten before tools around them matured.
Most of them are unintentional fragmentations, with minor differences such as case
sensitivity, key-value separation character, comments11, and encoding12. While these
differences are confusing in practice, we will only discuss fundamental differences here.
We will distinguish between document-oriented formats, object-oriented formats, and
configuration file formats designed as such. The distinction must be taken with a grain
of salt [79], the concepts behind these different formats are nevertheless useful.

10Nearly every programming language can be used as configuration file format.
11For example, subversion uses INI with # instead of ; to start comments.
12For example, Java properties use ISO 8859-1 and Flex properties files use UTF-8 as de-

scribed in http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/
resources/IResourceBundle.html.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/resources/IResourceBundle.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/resources/IResourceBundle.html
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Document-oriented file formats are intended to describe complete documents. These
formats provide many structural elements and have a rather heavyweight syntax. Never-
theless, they are popular for configuration settings. Strangely, they are hardly used to
produce documents even though a literal style is often preferred by system administrators.
One of the rare examples is that in Lynx the configuration file is converted to an HTML
page for online documentation. A typical document-oriented file format is XML [264].

Object-oriented file formats are intended to serialize objects from programming lan-
guages. Typical formats include JavaScript Object Notation (JSON) and Object Ex-
change Model (OEM). As another example, AIX introduced the Object Data Manager
(ODM) [150] for most of its configuration. ODM allows us to create classes, and their
instances are serialized. S-expressions [184] and JSON are subsets of programming lan-
guages. XML can also be used to serialize configuration settings in an object-oriented
fashion [149]. Object-oriented file formats seem handy at first but one has to continuously
resist to not leak internals, such as names and state, into the configuration files.

Other configuration file formats are formats exclusively designed to contain config-
uration settings and to be edited by humans. Earlier representatives are the already
mentioned INI, XF86Config, and CSV formats. For the CSV formats it was soon clear
that they are too limited: The number of keys they can represent is defined by the number
of columns. Thus in newer software like Xinetd, the CSV format was replaced. In other
cases like fstab and crontab, extensions were invented to circumvent limitations. One
trend is to revitalize INI avoiding some of its limitations, for example, as done by systemd
or TOML [207].

Some configuration file formats contain code, for example sendmail.cf. They are
harder to comprehend and cannot be edited by programs. Nevertheless, they are still
popular, for example, to configure some window managers. While all these formats
above have many differences, all of them represent configuration settings as key-value
pairs [139, 165, 238, 304]. For scripts key-value pairs are the result after execution. Thus
we will, without loss of generality, assume that configuration file formats can be mapped
to key-value pairs.

1.1.2 Configuration Specification

Misconfigurations are configuration settings that cause misbehavior in software [179,
307]. In some situations, misconfiguration becomes manifest because of problematic
configuration access, such as wrong transformations [304].
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Configuration specification, or specification in short, describes the behavior and
result of configuration access. Configuration specifications assign configuration prop-
erties, shortened as properties, to individual configuration settings. Properties can be
informal, for example, containing documentation, or formal, for example, describing a
data type and a transformation rule. Configuration specification can be internal and ex-
ternal, i. e., embedded within the application and in external files, respectively. External
configuration specifications can be written in the same file format as the configuration
settings. Configuration specifications are on a different meta-level than configuration
settings. As shown in Figure 1.1 we separate the universe of all possible configuration
specifications into five subsets.

configuration specifications

context specifications

access specifications

validation specifications

default value
calculations

transformation
specifications

Figure 1.1: Types of configuration specifications. The sizes of the circles suggest the
number of language constructs for the different specifications but such numbers vary
widely for different configuration specification languages.

Validation specification describes all possible valid configuration settings to enable
configuration validation. Murata et al. [193] says that validation specifications “are
more precise than those in prose and that we can rely on validators rather than
carrying out human inspections”. Complete validation specifications reject all mis-
configurations, and accept all other configuration settings. Validation specifications
are usually incomplete, i. e., there exist invalid configuration settings, which do
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not get rejected [137]. We call source code implementing validation specifications
validation code. In other work, validation specification is called schema [56, 79].
While it is clear that validation specifications shall be checked as early as possible,
this is currently rarely achieved. Xu et al. [306] wrote a tool to find validation
specifications executed too late and aims at pushing configuration validation to the
startup of applications. Ideally, the configuration validation would already happen
before the configuration settings are persisted and thus misconfigurations are never
present in configuration files.

Transformation specification describes how configuration settings shall be trans-
formed. Because not every transformation accepts arbitrary strings as input most
of these specifications are implicitly validation specifications.

Default value calculation complements other forms of configuration validation [44,
81]. While technically a subset of transformation specifications, it has tremendous
importance for configuration settings. Instead of creating a need to synchronously
change configuration settings, default values are calculated from other configura-
tion settings.

Access specification describe which configuration file and format shall be used for
retrieving configuration settings.

Context specifications are discussed thoroughly in chapters 3 to 5; and for the defini-
tion see Section 3.2.4.

1.1.3 Configuration Management

Configuration Management is a discipline in which configuration (in the broader
sense) is administered. Configuration management makes sure computers are assembled
from desired parts and the correct applications are installed. Furthermore, configura-
tion management ensures that the execution environment of installed applications is
as required.

Configuration management tools help people involved in configuration management.
Usually, source code describes the desired configuration of the whole managed system.
Then the configuration management tool tries to converge the actual configuration to
the desired one [45]

A currently challenging task within configuration management tools is configuration file
manipulation. The use of configuration libraries eases this task. It makes configuration
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file manipulation more precise and safe. Because default value calculations influence
the configuration settings the applications receive, additionally local introspection of
configuration settings is important for configuration management tools.

System Administrators

The system administrator is the most important stakeholder within configuration
management. System administrators need to configure every component in a way so
that the overall system has desired properties. This usually implies solving a constraint
satisfaction problem [254]. Higher-level configuration management tools help us find
solutions to such constraint satisfaction problems [58, 137].

System administration research tries to better understand system administrators [310].
The interest of understanding system administrators emerged rather recently [8, 27].
System administration research uses surveys, diary studies, interviews and observations.
Barrett et al. [26] tried to initiate a workshop at CHI 2003 to draw the attention of the
HCI community towards system administration. The workshop was already dropped in
the next year. Later Haber and Bailey [114] repeated an ethnographic field study similar
to the one by Barrett et al. [27]. In the study of Velasquez et al. [287] interviews and a
survey were combined. In interviews, they found that tools used by system administrators
varied widely. One main result of these studies is that system administrators lack tools
that have awareness of the context.

Configuration settings are often centered towards the need of developers. Thus system
administrators and end users struggle to understand the consequence of configuration
settings. State-of-the art is that system administrators and developers need to work
together tightly, also known as DevOps [249].

History

One of the first ideas for configuration management was to clone complete machines—
often in combination with file synchronization tools like rdist—and then do necessary
modifications with scripts or profiles. Profiles are groups of configuration settings be-
tween which the user can easily switch. This allows us to copy all needed configuration
settings onto every machine and afterwards decide which machine is used for which
purpose. While the approach is powerful if all machines are nearly identical, it shows
severe limitations once the machines start to differ significantly. This was state of the
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art for a long time, until in 1994 when “the community nearly exploded with four new
configuration systems” [87]:

lcfg from Anderson [10]. The development of lcfg started first in 1991 [9, 10]. Nevertheless,
its development still continues [11, 131].

GeNUAdmin from Harlander [119].

omniconf from Hideyo [129].

config from Rouillard and Martin [251].

According to Hintsch et al. [131], in 2016 the number of papers published with a configu-
ration management tool in focus is: 15 papers about CFEngine, 11 papers about Puppet,
9 papers about Chef, 7 papers about lcfg, and 3 papers about BCFG2.

1.1.4 Context-aware Configuration

As adapted from Chalmers [53]:

Context is the circumstances relevant to the configuration settings of the
application.

We extend the definition with:

Context-aware configurations are configuration settings that are consis-
tent with its context. Context-aware configuration access is configura-
tion access providing context-aware configuration.

Next we investigate the research question:

RQ 2.1. What are the viewpoints of context-aware configuration?

Types of Configuration

According to Wielinga and Schreiber [297] we have three different types of configurations
(valid, suitable, and optimal). We will extend it with a fourth type, orthogonal to all
others that we will call context-aware configuration:
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all configurationsvalid configurations

suitable
configurations

context-aware
configurations

optimal
configura-
tions

Figure 1.2: Types of configurations. The size of circles does not have a meaning here.

Valid configuration does not contradict the present validation specifications.
With a valid configuration, applications can start but they may not do what
the user wanted or may be inconsistent with context.

Suitable configuration is valid with respect to additional specifications from the
user that describe the system the user requires [159].

Optimal configuration is optimal with respect to given optimization criteria.
Optimization criteria are important if managing configuration of many com-
puters but are rarely needed for configuration access discussed in this book.

Context-aware configuration is in accordance with its context. Unlike configu-
ration settings, the context changes in ways outside of our control. Context-
aware configuration can also be valid, suitable, and optimal.

Viewpoints

Three viewpoints are important for context-aware configuration:

Sensors: Context sensors derive context from information sources of the system.
Adding new context sensors increases the context available in a system. Configu-
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ration that was context aware before, can be context unaware with respect to the
context acquired from the new context sensors.

Users: Context awareness can be subjective with respect to the needs of a user. For
different users, we may need different context specifications. Configuration that is
context aware for one user, can be context unaware regarding the wishes of another
user. According to Khalil and Connelly [155, 156] personalization is essential.

Time: Because context varies in time, on changes, we need to renew the context aware-
ness of configuration settings. In such situations we speak of context changes [103,
145]. Without renewing configuration settings, configuration settings context aware
in one moment of time, can be context unaware in the next moment.

These viewpoints imply that fully context-aware configuration is only possible with
a closed-world assumption. With an open-world assumption, we can always construct
differences in the viewpoints that make previously context-aware configurations inappro-
priate. Thus it is essential that users have possibilities to personalize and extend context
specifications to cope with differences in the viewpoints.

Time and users are not only a viewpoint but can be a context, too. For example, context
sensors can look into the working schedule to change the context according to currently
ongoing meetings.

We answer the research question:
RQ 2.1. What are the viewpoints of context-aware configuration?

Finding. At least three viewpoints, i. e. sensors, users, and time, decide about how to
interpret the current context. There may be further viewpoints, too.

1.2 Configuration Specification Languages

Configuration specification language is a relatively vaguely defined term—it is a
language where some kind of configuration is specified. In this section, we will investigate
different kinds of configuration specification languages.

We aim at configuration specification languages that provide background for Spec-
Elektra. We investigated who already created configuration specification languages to
improve configuration access, answering the following research question:
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RQ 2.2. Which configuration specification languages are suitable to improve configura-
tion access of FLOSS applications?

Hypothesis (RQ 2.2). We expect to find a large variety of configuration specification
languages that already solve some parts of the configuration integration problem.

1.2.1 Method

We did a survey of all configuration specification languages as revealed by Google Scholar
with the search term:

language

"configuration specification" OR

"configuration description" OR

"configuration definition" OR

"configuration declaration"

This search yielded several thousand articles. We grouped them by dates because of
download limits:

1950-1998 946 articles

1999-2004 919 articles

2005-2007 786 articles

2008-2010 872 articles

2011-2012 723 articles

2013-2016 810+ articles

The + sign means that we subscribed to the search term to keep track of new incoming
articles. We scanned through the titles of all papers—or if this was not enough, we read
the abstract—to filter off-topic papers. In particular, we removed all articles that describe
general purpose languages, behavioral descriptions, or that are domain-specific. After this
process, we grouped papers that described the same configuration specification language.
As result, we found 92 configuration specification languages. Due to lack of time, we only
further processed the ones that are at least remotely related to SpecElektra and are of
interest for this book. In this step, we excluded about 3⁄4 of the configuration specification
languages.
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In the rest of the section, we will describe four selected properties, i. e. expressiveness,
reasoning, modularity, and reusability, for some configuration specification languages.
Others are mentioned in “Others”.

1.2.2 UML

Felfernig et al. [88, 89, 90] describe an approach where the unified modeling language
(UML) is used as notation to simplify the construction of a logic-based description. The
papers formally describe the semantics. Tools are available and experimental results show
feasibility.

Expressiveness: All UML features, including cardinality, domain-specific stereotypes
and OCL-constraints are available. The basic structure of the system is specified using
classes, generalization and aggregation. Resources impose additional constraints on the
possible system structure. Finally, the require-relation and incompatible-relation allow
us to limit valid configurations.

Reasoning: Customers provide additional input data and requirements for the actual
variant of the product. The logical sentences are range-restricted first-order-logic with
a set extension and interpreted function symbols. For decidability, the term-depth is
limited to a fixed number. It is possible to show that the configuration is consistent or
that no solution exists.

Modularity: Generalization is present without multiple inheritance with disjunctive
semantics, i. e., only one of the given subtypes will be instantiated.

Reusability: For shared aggregation additional ports are defined for a part.

1.2.3 CFEngine

CFEngine [45, 206] is a language-based system administration tool that pioneered idempo-
tent behavior. It uses declarative class-based decision structures. Burgess [46] introduces
theory behind it.

Expressiveness: CFEngine allows us to declare dependences and facilitates some high-
level configuration specification constructs. In its initial variants it neither had validation
specifications, cardinalities, nor higher-level relationships.
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Reasoning: Not supported

Modularity: Not supported

Reusability: Existing system administrator scripts can be profitably run from CFEngine.

1.2.4 NIX

The NIX language [77] claims to be purely functional as a novel feature. The main
concept is the referential transparency both for the configuration specification language
and for the system itself. A large-scale deployment shows that the approach is feasible
and practical.

Expressiveness: NIX expressions, for example functions, describe how to build software
packages. The unit of variability is a package. Additionally, a hierarchical set of proper-
ties describes the configuration specification. Otherwise, the expressiveness is low, NIX
describes neither cardinalities nor relationships.

Reasoning: Because of the referential transparency of the system itself, every solution
derived from the NIX expressions should be valid, so no reasoning or conflict handling is
necessary. Some operations, however, might lead to a completely new system.

Modularity: The NIX expressions are modular because they ensure absence of side
effects and thus can be easily composed.

Reusability: Derivations that describe atomic build actions are reused in other deriva-
tions. Import and inherit features are used to create packages, improving reusability.

1.2.5 Pan

Cons and Poznanski [58] invented and used PAN for many machines within CERN.
Furthermore, the language is still used by Quattor. The configuration database in Pan
comprises high-level and low-level descriptions. The low-level descriptions are in XML
syntax. Here we focus on the declarative, high-level description.

Expressiveness: The Pan language allows users to specify data types, validation with
code snippets and constraints. It only supports lists but no configurable cardinality nor
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is-a/part-of relationships. The compiler uses a 5 step process: compilation, execution,
insertions-of-defaults, validation, and serialization.

Reasoning: Pan focuses on validating configurations, it is not able to generate new
configurations. Pan provides type enforcement with embedded validation code.

Modularity: The language has user-defined data types (called templates) but otherwise
has only minimal support for modularity. In particular, side effects and assignments
hinder modularity of validation code.

Reusability: Reusability and collaboration is only possible via simple include statements
and a simple inheritance mechanism of templates.

1.2.6 ConfValley

Huang et al. [137] introduce systematic validation for cloud services. ConfValley uses
a unified configuration settings representation for tens of different configuration file
formats. Its configuration specification language, called CPL, does not aim to be a type-
safe configuration specification language. It enables, however, system administrators of
cloud services to write declarative specifications of properties with correctness constraints.

Expressiveness: CPL introduces many concepts and has non-trivial language features.
Its most expressive elements are first-order quantifiers. CPL is not able to specify dynamic
and complex requirements.

Reasoning: Constraints can be inferred by running an inference engine on configuration
settings that are considered good (black-box approach). Within the validation engine,
however, no constraint solver is available.

Modularity: CPL aims at easy grouping of constraints. Its extensibility has limitations,
for example, adding language primitives need modifications in the compiler. The au-
thors claim, however, that these changes can be done in a straightforward way—at
least for predicates.

Reusability: Using transformations and compositions, predicates can be reused in dif-
ferent contexts. Also with language constructs like let, specifications can be reused.
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1.2.7 Others

Lock [173] invented Strider that supports modeling and analysis of complex systems.

Proteus [282] shows the tight relation between software configuration management, like
Git or Svn, and configuration specification languages. Proteus combines both worlds
in a powerful build system.

ConfSolve [127, 128] is a configuration specification language that is translated to a
standard constraint programming language called MiniZinc. Their focus is in finding con-
figurations for machines and not to compute configuration settings. ConfSolve generates
Puppet code for deployment.

Many other configuration specification languages have been found during the survey [11,
34, 69, 96, 104, 112, 130, 136, 176, 178, 201, 206, 250, 266], but they do not provide
configuration access specifications for FLOSS applications.

1.2.8 Result

The result of the survey was that we could not find a configuration specification language
to be used as basis. Instead all configuration specification languages we investigated had
a different focus, which leads us to our answer of:

RQ 2.2. Which configuration specification languages are suitable to improve configura-
tion access of FLOSS applications?

Finding. We have to reject our hypothesis for RQ 2.2: We did not find any configura-
tion specification language that supports our goal of solving the configuration integration
problem. Instead earlier work had at least one of the following two assumptions:

• Configuration access in applications needs to be used as given. Configuration man-
agement tools have this assumption.

• Applications need to be reimplemented using new development methods. Architecture
description languages, software product lines, and similar approaches have this
assumption.

Both assumptions hinder progress in fixing the configuration integration problem.
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1.3 Programming Paradigms

In this book we will extend from several existing programming paradigms. This section
explains the necessary foundations.

1.3.1 Data-driven Programming

Data-driven programming is a very popular programming paradigm available in most
programming languages. Raymond [242] says that “in data-driven programming, the data
[. . . ] defines the control flow of the program. Where the primary concern in OO [object-
oriented programming] is encapsulation, the primary concern in data-driven programming
is writing as little fixed code as possible. Unix has a stronger tradition of data-driven
programming”. Raymond [242] further elaborates “Lisp and Java programmers call this
introspection; in some other object-oriented languages it’s called metaclass hacking.” We
will use the terminology from Lisp and Java and will call the facilities for applications
to look up configuration settings and specifications introspection.

1.3.2 Object-oriented Programming

Simula is believed to be the immediate ancestor of object-oriented programming [246].
Smalltalk further evolved the paradigm [197]. In homogeneous designs the premise of
“everything is an object” goes quite far, next to primitive types and classes, even expres-
sions are objects. But the premise needs to be broken at some level, for example messages
normally cannot be objects we can send messages to [197]. But particularly the sending
of messages is central to the object-oriented programming mechanism.

There are different reasons why object-oriented programming got popular. While first the
immediate code-reuse, for example via inheritance, rose to prominence, it soon became
clear that subtyping is even more powerful on large-scale systems. A long-standing
problem was nominal versus structural subtyping. Malayeri and Aldrich [180] found
a solution to combine both ways of subtyping. Object-oriented programming has all
building blocks for design patterns [98]. Sometimes, subtyping even presents elegant
solutions for problems that were thought to be intractable [293].

For details on how to implement an object-oriented system, we refer to Schwartzbach
and Palsberg [261]. For configuration libraries, object-oriented programming had little
impact for two reasons:
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• Encapsulation has little use in a scenario without behavioral specifications. Classes
exclusively consisting of trivial getter and setter methods have no advantage to
directly accessing data.

• Subtyping is hardly used in configuration settings. The reasons are similar: The
benefit of subtyping on simple data types is limited compared to subtyping on
objects with behavior.

1.3.3 Persistence in Object-oriented Programming

The main limitations of persistence in object-oriented programming is figuratively de-
scribed as “Fitting Round Objects Into Square Databases” [283]. Databases and con-
figuration libraries emphasize data independence, which is different from the focus of
object-oriented programming [283]. Data independence aims at separation of the per-
sistent data and their applications using it.

Objects in Smalltalk are persistent, which can be used as replacement for configuration
settings from the developer’s point of view. Later systems provided dedicated object
serialization [126]. While it is a good idea to have the persistence format decoupled
from objects, efforts usually do not go far enough to have a serialization that fulfills all
desired properties for configuration settings. The fundamental problem is that objects
are coherent with the implementation design, which usually has nothing to do with the
system administrator’s needs.

1.3.4 Aspect-oriented Programming

While core concerns are the functionality software was designed and modularized
for, cross-cutting concerns are usually scattered throughout the code base. Typi-
cal examples for cross-cutting concerns are persistence and logging, both relevant for
configuration access.

Kiczales et al. [158] suggested to weave separately implemented modules (the cross-cutting
concerns) into the main module (the core concern). After the first implementations
for Lisp and Java, other implementations, for example, for C++ [15], followed. While
it is straightforward to show that aspect-oriented programming improves modularity,
there is doubt if aspect-oriented programming increases development speed [117] or has
advantages during maintenance [85].
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Chiba et al. [54] proposed a radically different approach: Instead of extending syntax,
they suggested a synchronous copy and paste. To do so, they remember all concerns in a
tree. This approach allows us to handle cross-cutting concerns over documentation and
other non-code artifacts.

Immensely successful (and without alternative) got aspect-oriented programming in
system-level tracing frameworks. For example, DTrace and SystemTap allow system
administrators to collect data about the running system.

1.3.5 Feature-oriented Programming

Feature-oriented Domain Analysis (FODA) pioneered methods to reuse require-
ments [147]. It distinguishes between compile-time, load-time, and run-time features.

Mostly unrelated but with the same goals, feature-oriented programming emerged. Feature-
oriented programming or software product lines is an appropriate technique to implement
program families [167, 190, 286]. Prehofer [220] described them to be similar to (abstract)
subclasses or mixins. Instead of rigid class structure, features are composed when creating
objects. The central problem of feature interaction is resolved by lifting function of one
feature to the context of another. The basic idea is that only “a quadratic number of(n

2
)

= n2−n
2 of lifters, but an exponential number

(n
k

)
, k = 1, ..., n of different feature

combinations can be created.” [220]

Apel et al. [15] extended the approach with multiple inheritance and templates. Further-
more, they integrated aspect-oriented features. Thüm et al. [279] created a framework
based on Eclipse used for educational purposes. Different from previously mentioned
solutions it embeds the feature-oriented domain analysis.

Batory [29] gives a short introduction on product lines, which is a design methodology and
tool for program synthesis. The idea is to specify products via features, as done in non-
software products such as assembled personal computers. Such a specification contains
programs as constants, and feature refinements as functions with a feature-augmented
program as return value. These constants and functions define a relational algebra. It is
possible to synthesize non-code artifacts or product lines of product families.

1.3.6 Subject-oriented Programming

Harrison and Ossher [121] coined the term subject-oriented programming in order to bring
awareness that real-world objects cannot be objectively described. This would assume
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that all attributes are intrinsic and not depending on their relation to other objects.
The authors introduced a new paradigm that allows us to describe subjectivity. For
example, a tree has some intrinsic properties, such as its mass and height. But for most
applications, we are interested in subjective, extrinsic properties. The extrinsic properties
are viewpoints about different perceptions of the object. For example, a woodman wants
to compute a sale price and a squirrel wants to compute the food value of a tree. For
subjects only object identity is shared.

Ossher and Tarr [203] added lifetime features for subjects, including traceability. They
mainly see benefits of subject-oriented programming for programs in the large. They
claim that within subject-oriented programming design patterns can be implemented as
subjects, thus separating code to which they apply.

1.4 Context

Context is a natural thing, at least for humans. It creates more conversational bandwidth
and contributes more bits of information to communication. As downside, we miserably
fail in understanding the message if we do not put enough attention on the context.
In this section, we look at challenges and discuss techniques that tackle the challenges.

1.4.1 Context-aware Applications

In the last years the shape of computers changed radically. They often fit into our pocket
or even glasses and are fully packed with sensors. This gives many opportunities to take
more context into account.

Context awareness aims to give users the impression of applications and devices to be
smart [226]. We want applications to react according to properties of their physical envi-
ronments. For example, when an application notices that the device is on battery, energy
savings should be given priority. In the same way, if a tool tells the system administrator
that the Web server’s and the firewall’s configuration settings are inconsistent, the tool
is more context aware. The increased context awareness implies that the relationship
between the Web server and the firewall is known to the tool.

Most software has at least some context awareness but often without any explicit consid-
eration in the program design. Thus it is implemented in the same way as other features
are, interwoven in the core concerns. For others applications, context was an important
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design goal [24]. Riva et al. [248] searched for design patterns in code that support context
awareness in software.

Context-oriented Programming

One of the many systematic ways to write context-aware applications is called context-
oriented programming [5, 14, 16, 17, 24, 61, 74, 106, 133, 141, 145, 151, 216, 255,
259, 267, 275, 290, 294]. Contrary to other techniques to improve context awareness, it
focuses on the language level. Its run-time system is rather small, it does not need sophis-
ticated frameworks, databases, or middleware. Context-oriented programming supports
implementation of context-aware applications.

Gassanenko [100, 101] provided the first implementation using the name context-oriented
programming in Forth. In response to this first work, Costanza et al. [61] criticized that
Forth did not have object-oriented programming concepts. According to Costanza et al. it
is “not clear whether Gassanenko’s contexts must be fully defined or can be partial and com-
binable”. Later context-oriented programming languages extended from object-oriented
and often aspect-oriented programming. For example, Tanter et al. [276] combined context
awareness and aspects.

Context-oriented programming is a modularization technique on programming language
level [16]. So instead of having if conditions spread within the core concerns of the
application, context-oriented programming allows us to separate code for different con-
texts [74, 255, 259]. Improving on previous paradigms, context is multi-dimensional and
dynamically changed as needed.

The layer is the main concept of context-oriented programming. Each layer represents a
part of the context, and together they compose the context awareness of the application.
Activation and deactivation of layers dynamically adapt the application to a new
context. The layer switch is the response for context changes: They imply activations
or deactivations of the layer as needed by the context. Information about currently active
layers is usually stored in a data structure. Layers naturally cut across the whole system
and provide a natural modularization concept [17]. Context-oriented programming has
no restrictions on when layer switches occur. This dynamic behavior poses challenges
related to efficiency [17, 226]:

1. Activation and deactivation of layers can be inefficient.

2. Execution time, even without any layer switches, can be problematic.
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For both problems, improvements were suggested: For layer activation Costanza et al.
[61] build upon heavily optimized language features. Bockisch et al. [40] employed control
flow pointcuts in a virtual machine. Despite these optimizations, Appeltauer et al. [17]
revealed that performance penalties of 75 % to 99 % are common [226].

Context-oriented software engineering facilitates a “methodology that guides us
to a specification of context-dependent requirements” and a “methodology to systemati-
cally organize context-dependent requirements.” [145]. One of the hypotheses underlying
context-oriented software engineering is: “The factors dynamically changing the system
behavior are candidates for contexts.” Context engineers derive a design model on the
basis of a requirements model. It provides a systematic mapping from context-dependent
use cases to layers [145].

1.4.2 Contextual Values

Tanter [275] introduced a lightweight extension to context-oriented programming: Con-
textual values are variables whose values depend on the context in which they are
read and modified. They “boil down to a trivial generalization of the idea of thread-
local values”. The key idea is to use layers as “discriminate amongst possible values, not
only the current thread” [275]. Side effects are limited to the respective context [232].
Furthermore, contextual values naturally work along with layers as introduced in context-
oriented programming.

The semantics of contextual values are like variables, but their observed values change
according to the context. When reading a contextual value within a different context, the
value can be different even though no assignment occurred. When writing to a contextual
value, the written value is only visible within the current context that allows us to limit
the contextual value’s scope.



CHAPTER 2
Relevance to the Community

All of humanity’s problems stem from man’s inability to sit quietly in a room
alone.

— Blaise Pascal

In this chapter we present reasons why the community should find our challenges relevant
and unveil requirements to avoid some of the problems. We answer the research question:

RQ 3. Why do FLOSS applications lack context awareness and configuration validation
for configuration settings and what are the challenges in providing them?

The chapter is structured as follows:

In Section 2.1 we discuss what we observed in FLOSS initiatives and companies.

In Section 2.2 we conduct a study investigating the current state of configuration access.

In Section 2.3 we discuss the current state of context awareness in FLOSS applications.

In Section 2.4 we derive requirements from community feedback.

2.1 General Observations

Because of the omnipresence of the configuration integration problem, developers invented
many ad hoc solutions and workarounds. The ad hoc solutions and workarounds are

53
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important puzzle pieces to understand the situation of the configuration integration
problem. The author of this book made many general observations during the years.
In this section we walk through important problems repeatedly found in many FLOSS
initiatives and companies, answering the research question:

RQ 3.1. Which problems in configuration access are observed while developing FLOSS
with state-of-the-art techniques?

2.1.1 Method

We were involved in various FLOSS initiatives ourselves, for example, Performous (a
karaoke application). In this first section, we mainly rely on our own experience but we
discussed the problems with experts, and other persons involved in FLOSS initiatives.

Personal observations and experience reports involve high subjectivity. In particular,
it is well-known that bias spreads across several cases. If something is believed to be
true because of multiple observations, it can be due to bias such as the illusory truth
effect [123]. Because no findings here are inconsistent with other findings in the book, we
likely forgot our wrong observations because of recall bias. Unfortunately, knowing about
a bias does not avoid having it. Thus this material must always be considered critically
and supplementary.

2.1.2 Configuration Libraries

From our experience FLOSS initiatives and companies tend to develop their own con-
figuration libraries. To make developers consider using existing configuration libraries,
from the authors experience, it is essential that:

Requirement 1. A configuration library must be simple to use, easily available, light-
weight, efficient, and have an excellent out-of-the-box experience.

Often there are some constraints because of legacies, such as:

1. Customers already use legacy configuration file formats, and

2. it shall be possible to configure legacy software with the same configuration inter-
faces.

Requirement 2. A configuration library must be able to integrate (legacy) systems and
must fully support (legacy) configuration files.
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2.1.3 Duplication

In larger applications duplicates related to configuration settings arise and have to be
kept in sync. Even in mature FLOSS initiatives, for example PostgreSQL—where the
problem is already known and effort has been put into it—similar information needs
to be synchronized in at least four places [73]. Typically redundant, but with current
approaches often unavoidable duplicates, are:

1. command-line interfaces (CLIs), graphical user interfaces (GUIs), and Web inter-
faces showing configuration settings,

2. command-line options and environment variables for overwriting a configuration
setting,

3. validation code scattered and duplicated at several places,

4. several configuration files for different purposes1,

5. test cases that run the application with different configuration settings,

6. documentation of the configuration settings, and

7. places where configuration settings are used within the application.

The duplication makes it time-consuming to change, remove, or add existing configuration
settings because always various places need to be considered. Furthermore, the duplication
makes it hard to get reliable information about configuration settings.

Requirement 3. A single configuration specification must be able to include all infor-
mation to generate all artifacts needed for configuration settings.

We saw several teams introducing their own identical configuration settings instead of
sharing the configuration value of already given configuration settings. This approach
works nicely for the developers, who can avoid any collaboration and communication. It
creates, however, problems for system administrators who need to keep the duplicated
configuration settings in sync.

Requirement 4. A configuration library must allow us to share configuration settings.
1Such as configuration examples and default configuration files.



56 CHAPTER 2. RELEVANCE TO THE COMMUNITY

2.1.4 Inconsistencies

Developers, maintainers, documentation writers, and system administrators easily create
mismatches related to configuration settings. In many cases this problem results from
the duplication mentioned before. We saw that:

• a configuration setting is misspelled at one of the duplicated places,

• developers convert a configuration setting to a wrong type,

• developers invent non-documented default value calculations and transformations,

• the used configuration settings are not synchronized with the configuration settings
of the configuration file,

• data types or semantics of configuration settings differ between code and documen-
tation, and

• settings are hidden, i. e., used in the source but invisible otherwise. System admin-
istrators do not know about such settings.

Of course, mismatches easily happen anywhere and anytime related to software. The
problem with configuration settings is that they cannot be tested exhaustively. Testing is
limited because all configuration settings can interact and create an exponential number
of combinations. In FLOSS software, often only the configuration settings as used by the
(package) maintainer, developers, and testers are tested. Thus system administrators have
a good chance to find misbehavior if they facilitate rarely-used configuration settings.
Requirement 5. The specification must enable code generation and inconsistencies
must be ruled out during compilation.

For users and system administrators it is confusing if the configuration file has the
correct content but applications do not use it. For example, in a commercial application
configuration settings only take effect after the next startup [139]. We should avoid
situations in which applications do not behave as their configuration files suggest:
Requirement 6. Configuration libraries must provide ways to keep transient and per-
sistent views consistent.

Users must be able to know which configuration settings exist, and which values are valid
for them. In case of doubt, it must be possible for system administrators to query which
configuration settings and specifications are actually used:
Requirement 7. Configuration settings and specifications must be introspectable.
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2.1.5 Maintenance

As long as many similar and duplicated configuration settings exist, co-evolution is
unavoidable. It happens that:

• abundant code is accumulated around configuration accesses,

• unused configuration settings are not visible and therefore cannot be cleaned up,

• validation and transformation specifications need to be updated according to re-
ported problems, and

• outdated documentation for configuration settings needs to be corrected.

Such activities are time-consuming and error-prone, mainly because of the duplication.
Because these situations happen frequently, the source code likely gets inconsistent with
the documentation. Intensive testing would be needed but problems are often left for
system administrators to find.

We found many workarounds because of bad API design. In particular, in some applica-
tions we often found code that bypasses configuration access APIs.

Requirement 8. The configuration access API must be minimal and crafted carefully.

A large technical debt is validation code spread over the whole source code. We found
that most of the code around configuration accesses tries to validate and transform
configuration values. This code was often executed much too late, causing hard-to-find
misconfigurations.

Requirement 9. Validation of configuration settings must happen systematically before
the application is even started.

We found complicated constructs that assign the return values of configuration accesses
to variables. Here people wanted to optimize the program and avoid calling configuration
accesses within loops.

Requirement 10. Developers must have guarantees that read-only configuration access
is fast and updates only happen if wanted.

2.1.6 Result

Here we answer the research question:
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RQ 3.1. Which problems in configuration access are observed while developing FLOSS
with state-of-the-art techniques?

Finding. Due to observations we found that many small duplications of configuration
settings and specifications lead to inconsistencies and increase maintenance costs.

We have listed requirements that intend to reduce these problems.

2.2 Current State of Configuration Access

For the book we want to focus on configuration access that is indeed relevant and popular.
In this section we investigate which kind of configuration access FLOSS developers prefer
and how configuration access is currently done, answering the research question:

RQ 3.2. What is the current state of configuration access in FLOSS?

2.2.1 Method

In the main part of this section, we use labels to indicate which method we used. The
label “Q:” (without quotes) indicates that data was collected from the questionnaire
survey and the label “S:” (without quotes) represents that data was gathered from the
source code analysis.

Questionnaire (Label Q:)

The author of the book formulated questions with FLOSS developers as main target.
Three students added some questions for their bachelor book. They created two question-
naires using LimeSurvey and Google Forms. Then we organized several pilot surveys with
colleagues, FLOSS developers, and experts for surveys. Based on the feedback, we decided
to use LimeSurvey and improved the questions, answers, and visual appearance [233].

To be sure that we reach our main target group, we posted requests for participation in
many relevant FLOSS communication channels. We rewarded non-anonymous answers
by donations to initiatives related to FLOSS. For quality assurance, we cross-checked
these non-anonymous answers with the complete pool of participants [233]. The survey
was reachable from 20th June, 2016 to 18th July, 2016. After the survey was completed,
we sent an email to all non-anonymous participants.
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LimeSurvey version 2.50+ aided us for conducting the survey. The questionnaire started
with an introduction and personal questions to have characteristics of our group. The
personal questions included education, occupation, age, and FLOSS participation [233].
We did not ask any gender-related questions because we did not expect enough participa-
tion for significant conclusions. The main part consisted of questions about why and how
developers use configuration. We added open questions at the end of the questionnaire
for a qualitative touch.

In this book original questions are written down using the format O: “Original question”.
We report the percentages relative to the number of participants (n) answering the
particular question. We note standard deviations (s) and means for samples of n ≥ 95.
We utilized the Kolmogorov-Smirnov test [171] for samples of smaller size [233].

Source Code Analysis (Label S:)

Different from earlier work [139, 154, 304, 310], we do not want to limit ourselves to
configuration files. Instead we extend our studies to getenv, which is a configuration
access API to query environment variables. We chose it because it is unique in its
availability2 and standardization3 [233].

Application Version Application Version
0ad 0.0.17 Gimp 2.8.14
Akonadi 1.13.0 Inkscape 0.48.5
Chromium 45.0.2454 Ipe 7.1.4
Curl 7.38.0 LibreOffice 4.3.3
Eclipse 3.8.1 Lynx 2.8.9dev1
Evolution 3.12.9 Man 2.7.0.2
Firefox 38.3.0esr Smplayer 14.9.0˜ds0
GCC 4.9.2 Wget 1.16

Table 2.1: Versions of applications studied.

We analyze the usage of the function getenv in the source code. We carefully elected
16 FLOSS applications across different domains such as desktop, development, mobile,
games, and system utilities. Our selection criteria were popularity, code size, and a
thriving community. We included individual other applications for diversity. As shown in
Table 2.1, we consistently used the versions as part of Debian GNU/Linux 8 (Jessie) [233].

2It is readily available in nearly all programming languages, for example, it is included in the standard
libraries of Java, C, C++, Python, Lua, and many more.

3It is standardized by SVr4, POSIX.1-2001, 4.3BSD, C89, and C99 [1].
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We downloaded packages with apt-get source from http://snapshot.debian.

org [233]. To determine the code size we facilitated Cloc 1.60 [66].

We wanted to know how many of the textual getenv occurrences are real getenv
invocations, i. e. configuration access points, as opposed to occurrences in comments etc.
Thus we counted them manually for the versions as specified in Table 2.1 [233]. Obvious
wrapper functions that include getenv within their name are evaluated identically to
getenv itself [234]. We excluded some getenv occurrences:

• We did so if the getenv invocation is obviously related to debugging, logging and
testing. Such situations were determined by looking at the getenv parameter.

• We did so if the getenv invocation is obviously related to the build system, and
not used in the application.

The rationale behind these exclusions is that our study should be generalizable to run-time
configuration access, and not be specific to getenv.

History Analysis

For the analyses of the histories we looked at the same applications as specified in Table 2.1.
We used Git repositories, even if the official repository used a different version control.
Because of the immense number of commits in the application’s repositories, we could
not use Cloc for the histories4. Manually counting getenv in every commit was also out
of question. Therefore, we used the line-counting tool wc -l and grep -rio getenv

(with binary and project files filtered out).

2.2.2 Threats to Validity

As proposed by mixed methods, the combination of different analyses returns a more
complete picture [138]. Nevertheless, each of the individual methods needs to be con-
ducted with great care. Threats to validity concern the questionnaire, the source code
analysis, and the history analysis. Here we describe our mitigation strategies catego-
rized by these methods.

4It took weeks to run through all commits even without Cloc.

http://snapshot.debian.org
http://snapshot.debian.org
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Questionnaire (Label Q:)

Surveys reflect beliefs and wishful thinking of participants. Hence, we cross-checked with
other methods for facts in the source code of the applications. Nevertheless, opinions
assist in understanding reasons and goals, thus the survey is an essential part of the
overall work. We consider it as important supplement to source code analysis [233].

For the questionnaire survey’s validity we had to make sure that only FLOSS contributors
participate. To mitigate this threat [233]:

• We made clear in the introduction that the study is related to FLOSS, by starting
with O: “This survey targets developers of free and open source software (FLOSS)
applications”.

• We prompted the participants about involvement in FLOSS initiatives.

• We invited persons via communication channels that are most likely read by FLOSS
contributors.

• We advertised with donations to FLOSS initiatives.

Anonymized raw data for better reproducibility and the questions in full for better
repeatability are found at [37, 233, 289]:

https://rawdata.libelektra.org.

Source Code Analysis (Label S:)

Manual analysis has the danger of oversight and subjective classification. To minimize
such errors we incorporated second opinions and only report large differences [234].

An important matter is whether the applications and their developers are representative.
We address it by studying 16 mostly diverse applications. We added both large and small
applications. We took care that various development teams, domains, and programming
languages are represented. The browsers are also used in mobile contexts [234].

We have to acknowledge that the majority of evaluated software is implemented in
C/C++. Nevertheless, Java, JavaScript and Python are represented with 4.3, 3.3, and
1.1 million lines of code, respectively. Furthermore, we included Eclipse to have a huge
FLOSS initiative mainly implemented in Java [234].

https://rawdata.libelektra.org
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An equally important threat to validity is whether getenv, our prime subject of study,
represents configuration access points in general. According to previous studies [139, 238,
304], configuration access points are in their essence simple key-value accesses. Higher-
level configuration accesses, for example with complex data types, would only complicate
the implementation of the configuration access APIs [30, 234].

Some FLOSS initiatives contain getenv invocations in scripts used to configure their
compilation. These invocations are not part of the final executable and are irrelevant
for our goal of making software context aware at run-time. We did not include such
invocations to getenv in our classification. It is not always easy to tell which parts
of the source code actually end up in a given binary. We might have included some
getenv invocations in the analysis that are actually not included in the executable of
the application. Thus we might slightly overestimate the number of getenv occurrences.

Because we conducted a source code analysis, we were not able to pick closed-source
applications. A portion of the evaluated software, however, has its roots as closed-source
applications. Also based on our experience within companies, we are confident that our
conclusions hold for closed-source applications, too [234].

History Analysis

Some applications did not have a linear history. In some cases, different repositories
without common ancestors were merged. Even though we worked with great care, it is
possible that we did not always pick the right commits. If this often happened, we might
have missed trends that are there.

2.2.3 Configuration Access in FLOSS

What was the population of the survey?

Q: From 672 persons visiting the survey 286 started to answer. From them, 162 persons
completed the questionnaire and 116 persons left their email address.

The age of the population (n = 220) has a mean of 32 years (s = 9, O: “How old are
you?”). As occupation, 56 % of the persons selected software developer, 21 % system
administrator, and 16 % researcher (multiple choice question, n = 287, O: “What is your
occupation?”). The participants (n = 242, O: “Which country are you from?”) said they
are from Germany (50), Austria (41), United States (32), France (25), Australia (9), and
31 other countries (85). The reported degrees of the persons (n = 244, O: “Which is the
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highest degree that you have?”) are: master (38 %), bachelor (25 %), student (18 %), no
degree (13 %), and PhD (6 %).

In the questionnaire we asked to fill out information for up to five different FLOSS
initiatives (O: “In which free and open source software (FLOSS) projects have you
been or are you involved?”). For the first FLOSS initiatives, persons estimated their
participation time with a mean of 5.3 years (s = 5, n = 180, O: “Length of Participation
[years]”). Of these persons, 60 % reported a second FLOSS initiative, 36 % a third, 17 %
a fourth, and 9 % a fifth. All persons together reported that they participated in 400
FLOSS initiatives, from which 282 were unique5. Debian was the most often mentioned
initiative (28), then GNOME and KDE (9), and then Linux (7).

Which methods for configuration access are popular?

Finding. Command-line arguments, environment variables, and configuration files are
equally popular. Developers are very satisfied with them. Other configuration accesses are
less popular—both in reported use and satisfaction [233].

The finding leads to the requirement:

Requirement 11. A configuration library must support all three popular ways for con-
figuration access: configuration files, command-line options, and environment variables.

Q: Command-line arguments (92 %, n = 222), environment variables, for example,
via getenv (79 %, n = 218), and configuration files (74 %, n = 218) are the
most popular ways to work with configuration settings (O: “Which configuration
systems/libraries/APIs have you already used or would like to use in one of your
FLOSS project(s)?”).

Others—namely X/Q/GSettings (4 %, 11 %, 9 %), KConfig (5 %), dconf (7 %), plist (7 %),
and Windows Registry (13 %)—were used less (≤ 13 %, n ≥ 185). Freedesktop standards’
usage, for example shared-mime-info, is in between (20 %, n = 205).

Persons seldom found it (very) frustrating to work with the popular systems (O: “What
is your experience with the following configuration systems/libraries/APIs?”): getenv
(10 %, n = 198), configuration files (6 %, n = 190), and command-line options (4 %, n =
210). Less-used systems frustrated more (≥ 14 %, n ≥ 27): X/Q/GSettings (41 %, 14 %,

5With normalized names and collapsed “various” and “personal” FLOSS initiatives.
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35 %), KConfig (21 %), dconf (42 %), plist (32 %), or Windows Registry (69 %). QSettings
is the most popular API from the lesser-used ones with 51 % of (very) satisfied users.

Finding. The API getenv is used omnipresently with 2,683 occurrences.

S: Table 2.2 shows the number of occurrences of getenv per application as we counted
them manually.

Application 1k lines
of code

counted
getenv

lines per
getenv

0ad 474 55 8,617
Akonadi 37 13 2,863
Chromium 18,032 770 23,418
Curl 249 53 4,705
Eclipse 3,312 40 82,793
Evolution 673 23 29,252
GCC 6,851 377 18,172
Firefox 12,395 788 15,730
Gimp 902 56 16,102
Inkscape 480 19 25,255
Ipe 116 21 5,529
LibreOffice 5,482 284 19,304
Lynx 192 89 2,157
Man 142 62 2,293
Smplayer 76 1 76,170
Wget 143 32 4,456
Total 49,556 2,683 18,470
Median 477 54

Table 2.2: Manually counted getenv [234]: The column 1k lines of code are the lines of
codes of the applications divided with a factor of 1,000. The column counted getenv
contains our manual count of getenv invocations. The column lines per getenv is the
ratio of the lines of code and manually counted getenv.

Why are currently so many configuration file formats present?

Finding. New configuration file formats were introduced by 19 % of the persons.

Q: The 19 % persons (n = 251, O: “In which way have you used or contributed to the
configuration system/library/API in your previously mentioned FLOSS project(s)?”), who
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claim to have introduced a configuration file format, confirm that regularly many new
configuration file formats get invented. Furthermore, 29 % implemented a configuration
file parser. Fewer persons (15 %) introduced a configuration system/library/API. Using
internal (35 %) and external configuration access APIs (34 %) is more popular than
reinventing new formats or APIs.

Discussion: More configuration file formats are invented (19 %) than configuration
system/library/API(s) introduced (15 %). This suggests that many configuration file
formats do not have a proper library/API for them.

2.2.4 Purpose and Trend of getenv

What is the purpose of getenv?

Finding. In most aspects getenv has the same purpose as other configuration access
APIs. Specific to getenv is its utilization for:

1. bypassing other configuration accesses (Q: 45 %),

2. locating configuration files,

3. debugging and testing (Q: 55 %, S: 1,152, i. e. 43 %), and

4. sharing configuration settings across applications (Q: 53 %, S: 716, i. e. 47 %).

Item 4 of this finding is an indication that there is a need for our Requirement 4:

Requirement 4. A configuration library must allow us to share configuration settings.

Q: In a multiple choice question we found that the reasons to use getenv vary (n = 177,
O: “At which places in the code would you use a getenv?”):

55 % say they would use it for debugging and testing,

53 % say they would use it for configuration integration, i. e., sharing configuration set-
tings (answer “environment variables” from question O: “Which effort do you think
is worthwhile for providing better configuration experience?”),

45 % would use getenv to bypass the application’s main configuration access,
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20 % would use getenv if they consider configuration settings unlikely to be changed
by a user, and

2 % say they would use getenv in a loop (O: “even when it is used inside a loop, for
example: for (int i = 0; i < K; ++i) getenv("HOME");”).

S: Out of the 2,683 getenv invocations, we classified 1,531 getenv invocations, i. e. 57 %,
not to be used for logging, debugging, testing, or similar. By analyzing which parameters
are passed to non-testing getenv invocations we found 716 invocations (47 %) using
shareable parameters, such as PATH.

As mentioned in the method section, we separated the getenv invocations for debugging
and testing because we wanted to avoid that our results are specific to getenv. Config-
uration settings in configuration files usually do not have so many settings dedicated to
debugging and testing. Thus further investigations in this book elaborate exclusively on
these 1,531 getenv invocations.

Application conf uniq Application conf uniq
0ad 45 25 Gimp 27 22
Akonadi 8 5 Inkscape 16 11
Chromium 387 234 Ipe 19 12
Curl 26 20 LibreOffice 207 120
Eclipse 33 24 Lynx 79 53
Evolution 13 11 Man 52 35
GCC 218 127 Smplayer 1 1
Firefox 376 245 Wget 24 17

Table 2.3: Counted number of getenv invocations without debugging and testing.

S: Table 2.3 presents the results of the classification. The column conf shows the number of
getenv invocations broken down from the before-mentioned 1,531 getenv invocations.
The column uniq displays how many of them had different parameters.

Most getenv invocations pass a string parameter defined nearby in the source code
(95 %). Only in 71 cases it was unclear which string is passed to the getenv invocation.

Analysis of getenv parameters: 357 configuration access points (105 unique) manage
configurable file system locations, for example, download directories or paths to con-
figuration files. Some configuration access points configure the user interface, such as
whether native widgets shall be used, for example, AQUA_NATIVE_MENUS. Furthermore,
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97 configuration access points (15 unique) configure the language, for example, LANG.
Some applications have a large amount of application-specific parameters to getenv,
for example, Firefox has 117 configuration access points (89 unique) with MOZ_* or
GECKO_* as parameters. Some parameters ensure compatibility with previous or stan-
dard behavior, for example POSIXLY_CORRECT. Other parameters probe hardware, for
example, 58 parameters (42 unique) probe OpenGL support. For common parameters,
we found different spellings or capitalizations, for example, TMP, TEMP, or TMPDIR.

We found configuration accesses that were outdated and not used anymore. We wrote 4
bug reports, 2 of them were acknowledged and 1 was fixed.6

Discussion: Overall we found the characteristics of getenv parameters to be very sim-
ilar to other configuration accesses like configuration settings in configuration files. One
special property of getenv is that parameters are commonly shared between applications
(such as PATH) but with some fragmentation. The analysis of the getenv invocations
surprised us by very different uses: In some cases, environment variables are misused
as global variables. Some getenv invocations obviously bypass the application’s main
configuration access. We found different reasons for bypasses:

• To locate the configuration files avoiding otherwise necessary bootstrap code.

• Because getenv was more readily available, for example, a pointer to the data
structure of main configuration access was missing at that place.

• It was added temporarily but never removed.

What is the trend of getenv occurrences?

Finding. In an analysis of the development histories of the 16 applications we observed
that getenv occurrences rarely decrease.

Figure 2.1 shows the historical development of textual getenv occurrences and the
textual lines in the repositories for Firefox and Chromium.

Implication. This inflation indicates research on getenv is future-proof and system
administrators may get even more complex interfaces in the future.

6Reported by us in https://savannah.gnu.org/bugs/index.php?47989.

https://savannah.gnu.org/bugs/index.php?47989
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Figure 2.1: The red points show occurrences of the text getenv in the repository of
Firefox (above) and Chromium (below). We suppress points where the number has not
changed between commits. The continuous, thin line indicates total lines of the applica-
tion’s source code. They are counted with wc and expressed as multiples of 10,000. The
repository contains files not present in the Debian source package we analyzed. The date
dimension goes beyond the release date of the manually evaluated Firefox version (22nd

September, 2015). In Chromium, we added the manually evaluated version. The graphs
are representative for about half of the evaluated software, others are highly irregular.

How are getenv parameters documented?

Finding. The documentation of getenv parameters is not satisfactory.

Method: Using startpage.com we searched for every parameter passed to getenv
invocations. If there were too many results, we added the name of the application. We
did not look at the second page, i. e., we only investigated the first ten links.

startpage.com
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Result: S: For only 283 non-shared getenv parameters we found documentation. We
could not find explanations of the behavior of the 387 other getenv parameters [233].

Discussion: We found different ways how FLOSS initiatives deal with lacking documen-
tation of getenv parameters. Many FLOSS initiatives declare getenv use as internal:
They officially do not recommend using them, even if no other workaround exists. Such
statements contradict our finding that only 20 % of FLOSS developers consider envi-
ronment variables unlikely to be changed. In some FLOSS initiatives the contributors
compile lists of available parameters. For example, LibreOffice contributors find getenv
invocations with grep7 [233].

2.2.5 Result

Here we summarize our results for the research question:

RQ 3.2. What is the current state of configuration access in FLOSS?

Finding. We found that three types of execution environments are especially popular:
configuration files, environment variables, and command-line options.

We unveiled details about why it is often arbitrary which of the execution environments
is chosen:

• Often the most convenient method is used.

• In the survey, people often could not agree what getenv shall be used for (Most
results are around 50 %.)

The getenv API supports all characteristics for configuration access and can be used
to investigate challenges in configuration validation.

Environment variables cannot replace configuration files because they do not support to
be persisted or to be changed from outside during execution.

7Which has limitations regarding getenv aliases and is also not intended for users, see https:
//bugs.documentfoundation.org/show_bug.cgi?id=37338.

https://bugs.documentfoundation.org/show_bug.cgi?id=37338
https://bugs.documentfoundation.org/show_bug.cgi?id=37338
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2.3 Current State of Context Awareness

In this section we answer the research question:

RQ 3.3. Which proportion of configuration accesses is already context aware or can be
made so without any source code changes?

Hypothesis (RQ 3.3). We expect at least some configuration accesses to be context
unaware as candidates for improvements.

2.3.1 RQ 3.3.1: What are the usage patterns of getenv?

In this part we investigate if configuration access points already consider context. We
focus on the configuration access points using the API getenv.

Method

We refined our classification by determining whether getenv invocations for configura-
tion provide or require configuration context. We say that some configuration access code
requires context if it is executed conditionally depending on some configuration value.
The configuration access code controlling such conditional branches is said to provide
context for the conditionally executed code.

Example 2.1. Consider the following code snippet adapted from Lynx:

1 if (lynx_cfg_file == NULL) {

2 if ((cp = getenv ("LYNX_CFG")) != NULL)

3 lynx_cfg_file = strdup (cp);

4 }

Here the getenv invocation requires configuration context: It is conditionally executed
depending on the existence of a configuration file in a place that may have been configured
by a command-line option. This getenv invocation provides context for further configu-
ration access code because it controls where configuration settings will be searched. N

We only looked at code snippets with 20 surrounding code lines. In some cases this made
it difficult to judge whether a getenv invocation needed or provided context. In such
cases we were conservative and did not count the invocation as needing or providing
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context, except for invocations which are presumably used to locate configuration files.
Our results may be skewed by the fact that some FLOSS initiatives include source code
from others. For example, Chromium and Firefox both include source code of the SQLite
library that contains getenv invocations. Chromium even contain two slightly different
versions of at least some of this code.

Then we tagged contexts of configuration access points into categories. The categories
classify the purpose of the context, for example, if (running_os_X) getenv(..);

is in the os_X category.

Result

As shown in Figure 2.2 we identified 837 configuration access points where context is
needed. We found 750 places where the return value of getenv provides context for
configuration related code.

Figure 2.2: Classification of needed and provided contexts per application with a loga-
rithmic scale; config is the number of configuration-related configuration access points
(in total 1,531).

We introduced 152 categories of contexts. The categories include operating systems os_*,
getenv invocations getenv_*, locales, network, cmdline, build system, debug, hardware
specifics hw_*, system specifics sys_*, file system paths path_*, and others. Developers



72 CHAPTER 2. RELEVANCE TO THE COMMUNITY

put by far the greatest effort into correctly handling the context the operating system pro-
vides. They considered 36 different operating systems, with most occurrences for different
versions of Windows (155), various UNIX clones (127), Android (59), and VMS (23).

We found 102 invocations to getenv depend on other invocations to getenv, often be-
cause of fallback chains that support similarly named settings (for example, TMP, TEMP, or
TMPDIR). Hardware-based features were not often used as context but they were diverse,
for example, configuration access points checking for AES or SSE instruction set features.
In 38 places the name or presence of files formed a context. Many contexts occurred
only for a single configuration access point, for example, a specific software dependence.

Discussion

We searched for places where more context would be useful. Here, by nature, subjectivity
is involved. We only report the numbers we found but avoid building any finding or
implications on the number. We found 129 such places, with complaints on the Internet
in 23 cases.

We answer the research question:

RQ 3.3.1. What are the usage patterns of getenv invocations in the source code of
popular applications?

Finding. Source code to consider context often occurs around configuration access points.
We found 837 configuration access points where context is manually considered, and 750
configuration access points that provide context for others. Developers focus on support
for various operating systems. It is inevitable that in many places the context is forgotten:
we found cases with complaints in the Internet.

Implication. Based on the 837 needed and 750 provided contexts around configuration
access points, we assume developers tried hard to support context awareness.

2.3.2 RQ 3.3.2: How often is getenv repeatedly used at run-time?

As we learned from the questionnaire survey, nearly no developer thought getenv should
be used in a loop. Therefore, if getenv is nevertheless repeatedly invoked with the
same parameters, it is possible that developers assumed different semantics than getenv
actually has: All getenv calls within the process return a value initialized at application’s
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start. Thus getenv return possibly-outdated, non-context-aware values repeatedly, which
is a lost opportunity for better context awareness.

Method

To improve reproducibility we freshly installed Debian GNU/Linux Jessie with KDE and
GNOME desktop, respectively. Only one measurement (of the boot up) was done with
the GNOME variant. We applied only small modifications after the fresh installation: We
installed the mentioned applications8 and Elektra [232]. Furthermore, we configured
Akonadi to use an IMAP account.

For more accurate interpretation of the numbers it is important to know that usage pat-
terns vary widely between different hardware, operating systems, and installed packages.
For example, Firefox executed within GNOME9 triggered 11 GNOME-specific and 8
GTK-specific getenv invocations [232]. In the KDE desktop, these getenv invocations
would not occur. The differences caused by the environment are drastic. For example, on
the author’s laptop EliteByte (running KDE with many additionally installed applica-
tions), we counted 210.276 getenv invocations during startup. This number is 21 times
more than the number counted on a freshly installed KDE.

We examine how applications use getenv repeatedly. Only APIs that are repeatedly
used at run-time flawlessly support context awareness. To learn about usage patterns of
getenv, we count executions of getenv by logging all invocations [232].

Result

In Table 2.4 we use the following columns [232]:

lines of code: Counted lines of code.

getenv all: Counted getenv invocations while using the applications.

getenv init: Counted getenv invocation while starting up the applications.

all unique: From getenv all: How many different parameters were used?

later unique: From getenv invocations after initialization, how many different param-
eters were used? (For Wget and Curl we count the first download as initialization.)

8If not already part of the default installation.
9Which was not used in the main experiment.
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Application
lines of
code

getenv
all

getenv
init

all
unique

later
unique same

Akonadi 37,214 10,357 8655 110 12 5126
Chromium 18,032,183 6006 1803 1118 192 165
Curl 249,380 19 8 12 8 4
Eclipse 3,311,712 2790 2696 389 42 1495
Evolution 672,789 4407 1488 1060 24 163
Firefox 12,394,938 3371 2049 276 70 895
Gimp 901,703 2551 1115 217 137 364
Inkscape 479,849 722 457 160 51 166
LibreOffice 5,482,215 3354 2891 258 59 1493
Lynx 192,012 1931 961 27 27 923
Man 142,183 2862 13 86 76 2
Smplayer 76,170 212 164 71 8 53
Wget 142,603 11 10 8 1 3
Median 479,849 2790 1115 160 42 166
Total 41,821,956 38,593 22,310 3792 707 10,852
KDE * * 9606 265 * 2634
GNOME * * 144 47 * 4
Debian * * 5317 430 * 286

Table 2.4: Count of getenv during run-time. The star (*) means that any of the above
applications can be started in the session [232].

same: From the getenv invocations during startup (getenv init), what is the highest
number of getenv invocations with the same parameter?

The 13 applications of Table 2.4 requested a median of 2790 environment variables.
Akonadi had the largest number of getenv invocations. The environment variable
LANGUAGE alone was requested 5126 times. We observed a similar effect during the
KDE startup: 27 % of all getenv invocations used the parameter LANGUAGE. Other
applications had a more uniform use of different parameters. Thus the ratios of overall
requested and unique parameters differs greatly: Its median is 14 % but for Akonadi it is
only ∼ 1 % [232].

Discussion

We answer the research question:

RQ 3.3.2. How often is getenv repeatedly used at run-time?
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Finding. From Table 2.4, we conclude that getenv invocations happen extensively
across all studied applications at run-time. Applications do not stop querying environ-
ment variables after startup: For example, user interactions cause further getenv to be
invoked [232].

We assume that developers spend little effort in counting or optimizing getenv invoca-
tions. Quality assurance also unlikely finds such unnecessary occurrences. We conclude
that excessive use of getenv can be undeliberate [232].

Because developers expect configuration access points to be cheap, which is the case for
getenv, there is further support of Requirement 10:

Requirement 10. Developers must have guarantees that read-only configuration access
is fast and updates only happen if wanted.

2.3.3 Discussion

After investigating in the sub-questions, we answer the main question:

RQ 3.3. Which proportion of configuration accesses is already context aware or can be
made so without any source code changes?

Finding. We accept the hypothesis for RQ 3.3:

1. In the quantitative study we validate that getenv invocations are pervasive [232].

2. We found getenv invocations to happen frequently at run-time after startup [232].

3. Many manual considerations for context exist throughout all applications. We found
837 such places. We also found 750 places that provide context. Nevertheless, in
many places context is forgotten or not available.

Implication. The high number of getenv invocations is a prerequisite for run-time
adaptations of applications towards better context awareness without source code modifi-
cations [232].
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2.4 Configuration Challenges

Now that we have established that configuration accesses are widely used and popular,
we investigate challenges of providing configuration validation. We use the same methods
as described in Section 2.2.1, again with the labels “S:” and “Q:”. We investigate the
research question:

RQ 3.4. What are the challenges and requirements in providing configuration access
for context-aware configuration?

2.4.1 Reduction & Effort

Here we give empirical foundations to our observations in Section 2.1.

Why should configuration be reduced?

Finding. Many developers do not want to reduce configuration (30 %) while others say
reduction would prevent errors (43 %).

Q: Many participants (30 %, n = 215, multiple choice,O: “Why do you think configuration
should be reduced?”) think that the number of configuration settings should not be
reduced (O: “I do not think it should be reduced”). Other participants, however, argue that
configuration settings should be reduced to simplify code maintenance (50 %), to prevent
errors and misconfiguration (43 %), to provide better user experience (40 %), because
they prefer auto-detection (29 %) (with a possibility to override configuration settings:
32 %), O: “because use-cases which are rarely used should not be supported” (13 %), and
O: “because only standard use-cases should be supported” (1 %). Of the positive answers,
9 % admitted they O: “never find time for this task”.

Discussion: We found the high number of negative answers (30 %) surprising:

• Xu et al. [305] proposed to reduce the number of configuration settings to avoid
misconfigurations. They found that many configuration settings can be completely
removed without any replacement needed.

• It is the multiple choice question in which most persons rejected all positive answers.
As shown in the results above, we gave many reasons why reduction is a good idea
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in the answers. Saying no to the question disallowed picking one of the positive
answers. People who are not sure would most likely pick one of the arguments.

• We even considered more sophisticated arguments for reduction and added the
answer “auto-detection should always be overridable” (29 %). People who gave
this answer, were not counted to the 30 %. Popular FLOSS applications already
successfully used auto detection, for example X-server, and are well-known.

Which effort provides better configuration experience?

Finding. Most developers have concerns adding dependences for more validation (84 %)
but consider good defaults important (80 %).

From the finding we derive the requirement:
Requirement 12. Dependences exclusively needed to validate configuration settings
must be avoided.

Q: We got mixed answers (n = 177, multiple choice, O: “Which effort do you think is
worthwhile for providing better configuration experience?”): Developers agree that good
default values are important (80 %). Most techniques to provide better configuration ex-
perience, however, exceed the effort considered acceptable by the majority of participants.
The only majority was found in using getenv for a better configuration experience
(53 %). Many persons (44 %) would use other configuration access APIs next to getenv.
Fewer persons (30 %) would use OS-specific sources. Only 21 % of the participants would
use dedicated libraries, 19 % would read other application’s configuration settings, and
16 % would use external configuration access APIs that add new dependences.

Discussion: Because of dependences, FLOSS developers currently expect users to man-
ually configure their applications to be consistent with other configuration settings.

2.4.2 Validation & Specification

Which challenges prevent us from supporting validation?

Finding.

• Currently, validation specifications are manually implemented by hard coding them
into applications.
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• The validation code is scattered around as it is the case for other cross-cutting
concerns.

• Essential information needed for configuration validation (most often system con-
figuration settings) is often not available in applications.

Because sharing system configuration settings would make the information needed for
configuration validation more easily available, the finding supports Requirement 4:

Requirement 4. A configuration library must allow us to share configuration settings.

S: We did not find a single application that kept validation code separated. Instead we
found validation code to be scattered around similar to other cross-cutting concerns [233].

Furthermore, we found that information necessary for configuration validation is often
missing. In 204 places we assumed that a dependence to additional configuration ac-
cess points was missing. In 58 places we even found several hints, for example, missing
cases in fallback chains and complaints in the Internet. A real-life example of incom-
plete context awareness—despite immense effort to fully detect the context—is given
by Raab and Barany [233].

Discussion: Configuration validations are easily forgotten if not done in systematic
ways. This leads to important configuration settings not being available from the ex-
pected configuration source. In some situations the effort to get necessary information
for validation is too high. For example, information about installed packages, network
connections, firewall settings, hardware configurations, etc. are nearly impossible to get
in a portable way [233].

Why would you specify configuration?

Finding. Many developers (79 %) would like to use configuration specifications for dif-
ferent reasons.

Q: We found that 21 % of the persons would not specify their configuration because they
are too complicated (14 %), might introduce inconsistencies (3 %) and other reasons10

(4 %; n = 215, multiple choice,O: “Configuration specification (e.g. XSD/JSON schemas)
10Such as problems with manual editing or problems with JSON/XML technologies.
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allows you to describe possible values and their meaning. Why do/would you specify
configuration?”).

Those who would introduce specifications said:

58 % for O: “looking up what the value does”,

51 % it helps users to avoid common errors (O: “so that users avoid common errors”),

46 % to simplify maintenance,

40 % for rigorous validation,

39 % for documentation generation (for example, man pages, user guide),

30 % for external tools accessing configuration,

28 % for generating user interfaces,

25 % for code generation, and

24 % for specification of links between configuration settings.

Discussion: Even though many developers would like to specify their configuration,
most do not.

How important is it to mitigate the configuration integration problem?

Finding. Mitigating the configuration integration problem is considered to be important
to improve user experience (96 %).

The finding demands:

Requirement 13. A configuration library must mitigate the configuration integration
problem.

Q: From the multiple choice question (O: “Configuration integration is an effort to adapt
applications better to the system. How important are the following reasons to introduce
configuration integration? (e.g. reading /etc/papersize)”), we got the following answers
(at least “moderately important”, excluding “slightly important” and “not important”):
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96 % O: “to improve user experience” (43 % very important, n = 173).

90 % O: “because common/default settings are already available (e.g. in /etc/papersize)”
(24 % very important, n = 161).

84 % O: “because guidelines recommended it (e.g. $HOME in POSIX)” (21 % very im-
portant, n = 165).

70 % O: “because I am convinced it should be done” (18 % very important, n = 152).

2.4.3 Documentation

How should configuration be exposed?

Finding. The most important interface for configuration is configuration files (49 %).

The finding supports Requirement 2:

Requirement 2. A configuration library must be able to integrate (legacy) systems and
must fully support (legacy) configuration files.

Q: In detail, the persons answered (multiple choice, n ≥ 121, O: “How important is it
to expose configuration options in the following ways?”) that it is very important that
configuration settings shall be exposed:

49 % as configuration file,

36 % as command-line utility,

17 % via native GUI,

17 % via library API,

9 % via inter-process communication,

6 % via REST API11, and

4 % as Web UI.

How do you backup your configuration settings?

Q: Already 72 % of the persons have configuration files in version control system reposi-
tories, and 42 % use rsync (n = 159), again supporting the requirement:

Requirement 2. A configuration library must be able to integrate (legacy) systems and
must fully support (legacy) configuration files.

11Representational state transfer uses URLs and HTTP to provide an API.
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How do you inform yourself about configuration options?

Q: In detail, persons found it very important that (multiple choice, n ≥ 150, O: “You
want to configure a FLOSS application. How important are the following ways for you?”):

48 % documentation is shipped with the application

36 % configuration examples are shipped with the applications

17 % O: “google, stackoverflow. . . (looking for my problem)”

14 % looking at the website of the application

14 % use UIs that help them

14 % look into the source code

11 % O: “wiki, tutorials. . . (looking for complete solutions)”

5 % look into the configuration specification

2 % ask colleagues and friends

Discussion: The results suggest that configuration specification shall be used to generate
documentation and examples: On the one hand, developers think that the main reason
for specifying configuration is documentation (58 %, for O: “looking up what the value
does”). On the other hand, developers hardly use configuration specification to directly
look up documentation about configuration settings (5 %). This is supported by 40 % of
the persons, who would specify configuration to generate documentation.
Requirement 14. There must be a support for shipping correct documentation and
examples generated from the configuration specifications.

2.4.4 Community Feedback

Q: We found helpful community feedback in the questionnaire. As last question we asked
O: “Finally, which benefits do you think are essential in order to add a dependency to a
configuration system/library/API? (e.g. Elektra)”.

Persons acknowledged that a configuration library must be “lightweight and efficient”
(80 %, n = 153). Developers had consensus about that a configuration library “must be
available anywhere and anytime” (84 %, n = 153) [233]. A majority agreed that it “must
be a trivial API (e.g. like getenv)” (53 %), which supports our Requirement 1:
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Requirement 1. A configuration library must be simple to use, easily available, light-
weight, efficient, and have an excellent out-of-the-box experience.

Most participants (70 %, n = 150) recognize it as important to have a supportive
community. Even more persons find it important that bugs are fixed promptly (88 %,
n = 150) [233].

Many persons found support for readable configuration files important (65 %, n = 152),
which again confirms our Requirement 2:

Requirement 2. A configuration library must be able to integrate (legacy) systems and
must fully support (legacy) configuration files.

Other Selected Feedback

• “Must be extensible/adaptable. If it is, users can take care of many of the above
aspects themselves”.

• “It must offer a compelling reason to switch from e.g gsettings. [sic!]12 For example
a killer feature that others don’t have, etc. Otherwise, the status quo wins.”

• “env vars are great for trying out settings before baking them into config files.”

• “All generic configuration should come with a library, not be read directly; that
allows the library to migrate to new mechanisms without breaking applications that
use it.”

• “envs are difficult to track, you cannot assume them in every environment, it’s still
a bit tricky to work with them platform-indepentent [sic!]”.

• “In 0 A.D., we found it hard to use a cross-platform configuration system, which
is why our source code has its own simple configuration system.”

12We indicate typos with [sic!]. In this case the author most likely wanted to say “e.g. GSettings”,
which is a configuration system used in the GNOME desktop environment.



CHAPTER 3
Elektra

You never change things by fighting the existing reality. To change something,
build a new model that makes the existing model obsolete.

— Buckminster Fuller

In this chapter we formalize a model of Elektra’s central parts. They capture the
whole framework of Elektra. We do not provide any rationale but explain internal
dependences of the model. We concisely describe all parts relevant for further development
of this book, including the modular configuration specification language SpecElektra.
In later chapters, we will present the rationale and the connection to the requirements.

In Section 3.1 we discuss a common data structure all other parts of the framework
Elektra relies on. We use it to represent configuration settings and specifications for
both in-memory access, code generation, and persistent configuration files. We introduce
a syntax suitable for this book to denote configuration settings and specifications.

In Section 3.2 we explore the user’s view of Elektra. We elaborate on the funda-
mentals of the modular configuration specification language SpecElektra and how
SpecElektra provides guarantees for users concerning configuration access. We discuss
how to facilitate the contextual classes that implement type-safe contextual values.

In Section 3.3 we take the system’s perspective. We describe the essence of backends
and the algorithms used by LibElektra. We introduce how LibElektra keeps the
in-memory data structure in sync with the execution environment. We discuss the default
behavior of the key database and how the behavior is redefined via SpecElektra.

83
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In Section 3.4 we accustom us with the details of frontends. We introduce another
abstraction to transform configuration settings and specifications to source code. Based
on this abstraction, we show how GenElektra generates contextual classes and prove
the absence of a run-time error concerning unavailable configuration settings.

3.1 Data Structure

A key-value pair is the simplest generic data structure [271]. While syntactically plenty
of different configuration files are available, they all can be represented as key-value pairs
as discussed in Section 1.1.1. In this section we define a key-value data structure suitable
to contain configuration settings and specifications thereof.

3.1.1 Preliminaries

We start by defining the characters and strings needed to create key-value pairs:

Definition 3.1. The character set C includes all needed characters. There is a total
order on C with the character slash (‘/’) being the smallest character:

∀x, y ∈ C : ‘/’ ≤ x ∧ (x ≤ y ∨ y ≤ x) ∧ ((x ≤ y ∧ y ≤ x) =⇒ x = y)

A string −→C is a (possibly empty) sequence of characters in C. A non-empty string
−−→
C≥1 has a length of at least one. A value −→Cε is a string, that additionally can be ε (which
is different from an empty string). We call the set of all possible strings C, the set of all
possible non-empty strings C≥1, and the set of all possible values Cε = C ∪ {ε}.

We employ values ∈ Cε as configuration values. The value ε represents an available
configuration value that intentionally was set to be not available.

We use the extended Backus–Naur form notation to specify syntax [262, 269, 300]. We
have two forms to denote nonterminals:

• We write nonterminals in 〈angles and italics〉. They are case-sensitive and either
defined within grammars or in the surrounding text.

• We write nonterminals as symbols representing sets, such as C and C≥1. Here each
element of the set is supposed to be in the specified syntax.

To avoid name collisions, some nonterminals defined within the grammar start with
capitals. We write terminals in ‘quotes and in typewriter’. The quotes contain
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strings ∈ C (or characters ∈ C, only in the next definition). Furthermore, we write
productions with ::=, union with |, options with [], groups for preferences with (), and
any number of repetitions (including zero repetitions) in {}.

Definition 3.2. A white space (in grammars denoted as ‘␣’) is a character in C to
represent vertical space. The set of special characters P ⊂ C is:

P ::= ‘/’ | ‘%’ | ‘=’ | ‘,’ | ‘:’ | ‘;’ | ‘␣’ | ‘[’ | ‘]’

We denote a line break in grammars as ‘←↩’, but assume for the discussion here that
they are not considered as characters ∈ C and thus cannot be part of strings or values.1

Definition 3.3. A clean string
−→
C ′ is a sequence of non-special characters in C \ P ,

and
−−→
C ′≥1 is a non-empty sequence thereof. We call the set of all possible clean strings C′

and the set of all possible non-empty, clean strings C′≥1. We denote literal strings
with ‘string’ and string concatenation with x++ y (x, y ∈ C).

Example 3.4. The literal ‘example’ is a string ∈ C, a clean string ∈ C′, and a non-
empty, clean string ∈ C′≥1. It is identical to the string ‘ex’ ++ ‘ample’. The string
‘hello, world’ is a string ∈ C but not a clean string, i. e., /∈ C′. It contains two special
characters: a comma and a white space (‘␣’). N

3.1.2 Key Names

Definition 3.5. The set of relative key names R is a subset of non-empty strings
C≥1 according to the following grammar:

〈hierarchy level〉 ::= C′≥1 | ‘%’

〈basename〉 ::= 〈hierarchy level〉

R ::= { 〈hierarchy level〉‘/’ } 〈basename〉

As shown in the grammar, a basename is a special case of a hierarchy level: We call
the right-most hierarchy level basename. The meaning of the special characters in the
relative key names are:

‘/’ is the hierarchy separator, splitting up the relative key name into hierarchy levels.
1 In the implementation special characters such as line breaks are escaped with complicated rules

not relevant to the model. We assume escaped line breaks to be characters different from ‘←↩’.



86 CHAPTER 3. ELEKTRA

‘%’ denotes an empty hierarchy level.

Example 3.6. The string ‘slapd/%/bar’ is a relative key name. Its hierarchy levels
are ‘slapd’, ‘%’, and ‘bar’, where ‘bar’ is additionally called basename. N

Definition 3.7. The set of key names N is defined by the following grammar, where
each element in N is a namespace:

N ::= [ N ‘:’ ] ‘/’ R

N ::= ‘spec’ | ‘proc’ | ‘dir’ | ‘user’ | ‘system’

If a key name does not have the optional namespace and starts with ‘/’, we say the key
name has namespace ε (which is not included in N).

The elements of N represent the namespaces spec, proc, dir, user, and system. They
have fixed semantics described in Section 5.2.1.

To avoid name collisions of key names we have two options:

• If we speak of the same configuration setting from different configuration sources,
we use namespaces. The namespaces N resolve conflicts between otherwise identical
key names.

• Otherwise, we introduce further hierarchy levels.

Example 3.8. The string ‘user:/slapd/%/bar’ is a key name. Its hierarchy levels
are the strings ‘slapd’, ‘%’, and ‘bar’, where the string ‘bar’ is the basename. The
string ‘user’ acts as its namespace user. N

For simplicity and easier distinction with other strings, we leave out the ‘quotes’ for
(relative) key names.

Example 3.9. The string /slapd is a key name. Its namespace is ε. The only hierarchy
level is also the basename, which is slapd. N

We define the following operators on key names.

Definition 3.10. Using x, y ∈ N and n ∈ N :

x ≤ y is defined by lexicographical comparison of the characters.

removeNamespace(x) =

x if the namespace of x is ε

y otherwise, where x = n++ ‘:’ ++ y
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Example 3.11. For every x ∈ C, user:/a/a ≤ user:/axa is true. A further example
of lexicographical comparison is given in Example 3.34 on page 96. N

Example 3.12. removeNamespace(user:/slapd/%/bar) gives /slapd/%/bar. N

3.1.3 Keys and Key Sets

Definition 3.13. The set of metakey names M is a subset of the set of relative key
names R. G is a set of grammars. The metafunction Ψ is a global mapping from every
defined metakey name m ∈M ⊂ R to a grammar g ∈ G, i. e., Ψ: M 7→ G. Xg ⊆ C is the
set of strings that forms the language described by g ∈ G. Metakey values are elements
of the set ⋃

g∈G
Xg.

In the extensible meta-specification describing SpecElektra, we define all grammars
g ∈ G for the metakey names M . We give some of these grammars in the course of this
chapter. Users can extend M but cannot redefine Ψ for existing elements in M . With
every new element in m ∈ M , the user also needs to add a grammar g ∈ G and add
(m, g) ∈ Ψ. Every extension automatically adds to the set ⋃

g∈G
Xg because it is the set

that includes all strings according to the languages described by all grammars in G.

Example 3.14. Given 〈number〉 as decimal number, let us define 〈property check/range〉
∈ G for ‘check/range’ ∈M assigned by Ψ(check/range):

〈property check/range〉 ::= 〈range〉 { ‘,’ 〈range〉 }

〈range〉 ::= 〈number〉 ‘-’ 〈number〉
| 〈number〉

Thus 1,2,4,8,16 as given in Example 0.6 on page 16 is a valid metakey value for
check/range. N

Example 3.15. Let us define 〈property type〉 ∈ G for ‘type’ ∈M assigned by Ψ(type):

〈property type〉 ::= ‘boolean’ | ‘string’ | ‘short’ | ‘unsigned_short’
| ‘long’ | ‘unsigned_long’ | ‘long_long’
| ‘unsigned_long_long’ | ‘float’
| ‘double’ | ‘char’ | ‘any’ | ‘octet’

Thus long as given in Example 0.6 is a valid metakey value for type. N



88 CHAPTER 3. ELEKTRA

Definition 3.16. A key is a record 〈k, v, µ〉 with the following fields:

k is a key name from N.

v is a value from Cε.

µ is a function, defined as µ : M 7→ ⋃
g∈G

Xg, which maps from metakey names to metakey

values. The grammar of each metakey value is defined by: ∀r ∈M : µ(r) ∈ XΨ(r).

We call the set of all keys K.

A key x holds the configuration value x.v for a configuration setting with the name x.k.
The function x.µ assigns metadata to this configuration setting. We write Key if we
refer to the class implementing keys.

Example 3.17. The key x = 〈user:/slapd/threads/listener, 4, {check/
range 7→ 1, 2, 4, 8, 16}〉 has the key name x.k user:/slapd/threads/listener,
the value x.v which is 4, and the metadata x.µ that maps the metakey name check/
range to the metakey value 1,2,4,8,16. N

Example 3.18. The key x = 〈user:/slapd/threads/enabled, 1, {type 7→
boolean}〉 has the configuration value x.v = 1, which represents true. N

We define the following operators on keys:

Definition 3.19. We use x, y ∈ K, and n ∈ N :

x = y ⇐⇒ x.k = y.k

x ≤ y ⇐⇒ x.k ≤ y.k

n :/x = y where y.k = n++ ‘:’ ++ removeNamespace(x.k)

Example 3.20. With x from Example 3.17, applying system :/x yields the key y with
the key name y.k = system:/slapd/threads/listener. N

Definition 3.21. We say a key x is of the namespace n iff x.k has the namespace n.
A cascading key is of the namespace ε.

Example 3.22. The key x = 〈/slapd, ε, {}〉 is of the namespace ε and thus is a
cascading key. N

If a configuration value represents a boolean, by convention, we use the string 0 to
represent false, and 1 to represent true.
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Definition 3.23. Iff the key x is of the namespace spec, we call a metakey name also
a property name, a metakey value also a property value, and the mapping x.µ also
a property.

Property names define the syntax of property values via Ψ.
Example 3.24. The key x = 〈spec:/slapd/threads/listener, ε, {check/
range 7→ 1, 2, 4, 8, 16}〉 has the (only) property name check/range with its property
value 1,2,4,8,16. Thus the (only) property of x is check/range 7→ 1, 2, 4, 8, 16. N

Definition 3.25. A key set K ⊆ K is a totally ordered set of keys where ordering is
defined by ≤ on keys. We call the set of all key sets K. The key set without any key is
called the empty key set κ. The nullary operator ∅ returns a special key that indicates
the absence of a key. The key ∅ cannot be part of a key set. The set with all keys including
this special key is K∅ = K ∪ {∅}.

We write KeySet if we refer to the class implementing key sets.

KeySet Key

key name

value

meta-
data

metakey or property

metakey name or
property name

metakey value or
property value

Figure 3.1: KeySet: Elektra’s data structure.

A key set represents configuration settings and specifications. Figure 3.1 gives us a visual
representation of a key set.

In the next two sub-sections, we define the two most important operations on a key set.

3.1.4 Appending

Let us start with the definition of the ksAppend operation for K.
Definition 3.26. We use x, y ∈ K and s ∈ K:

ksAppend(s, x) =

s ∪ {x} if ∀y ∈ s : y.k 6= x.k

(s \ {y}) ∪ {x} if y ∈ s, y.k = x.k
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The result of the function ksAppend is a key set that has the key x appended to the
key set s. If a key with the key name x.k is already present, it will be replaced by the
key x. Key sets are exclusively constructed as follows: We start with the empty key set
κ and repeatedly append keys to it using ksAppend.

Example 3.27. After applying ksAppend(ksAppend(κ, 〈user:/x, foo, {}〉), 〈user:
/x, bar, {}〉), we have constructed the key set {〈user:/x, bar, {}〉}. N

Lemma 1. If a key set is constructed by repeatedly applying ksAppend to the initially
empty key set, then keys within the constructed key set are unique with respect to their
key name k. Given the natural numbers n,m, b (including 0), the keys x1, . . . xn ∈ K, and
the key set s ∈ K, where s was constructed using ksAppend(. . .ksAppend(κ, x1) . . . , xn)
the following statement A(n) is always true:

∀xm, xb ∈ s : xm 6= xb =⇒ xm.k 6= xb.k (3.1)

Proof. Base case: The only possible way to construct a key set is by subsequent use of
ksAppend. Given the key x1 ∈ K the induction start must be ksAppend(κ, x1).
Trivially, x1.k is unique in a key set only containing x1, i. e., A(1) always holds.

Induction step: Suppose the hypothesis—that A(n) is true—holds for the appended
keys x1, . . . xn ∈ K, we have to show that A(n) =⇒ A(n+ 1) holds for all n. The
proof—that adding a key x to s cannot change the uniqueness of x.k—directly
follows from the definition of ksAppend:

• If x.k is already present as key name in s, then appending x causes the removal
of the key that has the key name x.k. Therefore, no key with the same key
name is present.

• If x.k is not present in s, x is added to s and is the unique entry with the key
name x.k.

3.1.5 Lookup

Let us define the ksLookup operation on K.

Definition 3.28. We use l ∈ K, z ∈ K∅, and c ∈ K. ksLookup(c, l) = z searches
the key l in the key set c and returns z ∈ (c ∪ {∅}). The key l is the key to be looked
up. ksLookup has the signature K × K → K∅. The nullary operator ∅ represents the
not-found key. Iff the key was found, ksLookup returns a key from c.
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The algorithm ksLookup provides two different views on a key set:

1. If l is of namespace ε, a cascading lookup is used. A cascading lookup consists
of the following steps:

a) The function ksLookup can be extended. Such extensions allow us to consider
more keys to improve context awareness and to visualize the lookup process.
If an extension is available, the cascading lookup tries to look up the key l
with the lookup logic as provided by the extension. We present an extension
lookupByExtension later in Section 3.3.1.

b) The namespace spec is considered. If the key spec :/ l is found, we evaluate
its properties. We show the algorithm lookupBySpec in Section 3.3.2.

c) Otherwise, as shown in Figure 3.2, we return a key with one of the following
key names: proc :/ l, dir :/ l, user :/ l, and system :/ l (in this preference).

/ proc dir user system

/key1

/key2

/key3

dir:/key1

user:/key2

dir:/key3 system:/key3

(process
specific, e. g.,
command-line
arguments)

(user specific) (system wide)(directory
specific, e. g.,
working
directory)

Figure 3.2: Cascading lookup in Elektra. Arrows indicate the lookup procedure if
calling ksLookup with /key1 to /key3. The arrow ends at the key which is returned.
The key system:/key3 is not found. Explanations about namespaces follow later.

2. If the lookup key l is not of namespace ε, ksLookup guarantees for every return
value x that x.k = l.k ⇐⇒ x 6= ∅. I. e. ksLookup either returns a key with exactly
the same key name or ∅. This form of ksLookup is the non-cascading lookup.
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Lemma 2. Given any key set s ∈ K and the key k ∈ K, where k is not of namespace ε,
the following statement is always true:

∀s, k : ksLookup(ksAppend(s, k), k) = k (3.2)

The proof of Lemma 2 directly follows from the above definition of ksLookup and
ksAppend: we know that k gets appended to s, and because k.k has a namespace it is
found by ksLookup.

We influence the behavior of ksLookup by adding keys of the form spec :/ l to the key
set. This way, we enable the system administrator to specify guarantees for a cascading
lookup by modification of persistent keys’ properties in the namespace spec.

For cascading lookups, it is possible that ksLookup finds the same key x for different
arguments of ksLookup. The function ksLookup with cascading lookups is no longer
bijective, we only have the properties of a surjective function. Because the key name of
the parameter l and the result z can be different, it is important that the key name is
part of the key: From the returned key, we know the key name of the found key.

The cascading lookup is an important abstraction and applications exclusively rely on
cascading lookups to look up their configuration settings. Thus for applications, con-
figuration settings are represented by a key set only considering the key names and
configuration values returned from cascading lookups. Only tools intended for system
administrators use the non-cascading lookup, so that all keys can be administered. Con-
figuration specifications are written in SpecElektra and are represented by a key
set only considering the key names of the namespace spec and the key’s properties.

3.1.6 Syntax

As we see in Figure 3.3, three meta-levels of Elektra are important. For the three
meta-levels, we describe two syntaxes to denote a key set to be used in this book:

1. Meta-specifications consist of a grammar g ∈ G assigned by Ψ. We explain the
semantics mostly informally. We do not need a special syntax for these specifications.

2. For configuration specifications we need a way to denote key names and properties,
but we do not need to include configuration values. The grammar for this syntax
will be given below.
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configuration
setting

configuration
specification

specifies (grammar via Ψ)

specifies

meta-specification of
SpecElektra

Figure 3.3: Metalevels in Elektra.

3. For configuration settings we only need to denote key names and configuration
values without any support for metadata. The grammar for this syntax will be
given further below.

The separation of syntax between configuration settings and specifications is purely
for practical purposes so that different meta-levels are clearly distinguishable. The dis-
tinction between configuration settings and specifications happens via namespaces and
not via syntax:

• If a key is in the namespace spec, the metadata is used as properties and the key
represents a configuration specification.

• If a key is in another namespace, the metadata only describes the key itself, but does
not specify the configuration setting. Here the configuration value is the essential
information. Such keys are configuration settings.

For this book, we could have used every configuration file format that has a correspondence
to a key set, for example, in XML syntax with metadata written as attributes. We use,
however, a simple INI-like syntax to illustrate key sets. We exclusively rely on relative
key names.

Configuration Specifications

Here we describe a syntax for configuration specifications. They are used to specify
configuration settings and configuration access in SpecElektra. A syntax usable for
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SpecElektra needs to include relative key names (called R, see Definition 3.5 on
page 85) with properties (see Definition 3.23 on page 89):

〈configuration specifications〉 ::= { 〈configuration specification〉 { ‘←↩’ } }

〈configuration specification〉 ::= ‘[’ R ‘]’ ‘←↩’ 〈properties〉

〈properties〉 ::= { 〈property〉 ‘←↩’ }

〈property〉 ::= { ‘␣’ } 〈property name〉 ‘:=’ [ 〈property value〉 ]

The absence of the 〈property value〉 means that the property value is empty. The gram-
mar of the 〈property value〉 is depending on its associated property name x. The meta-
specification specifies its grammar to be Ψ(x).

Example 3.29. This is a configuration specification:

1 [slapd/threads/listener]

2 property1:=propvalue1

3 property2:=propvalue2

In the first line, we write a relative key name within []. Property values are assigned with
:= to property names. Every key can be specified with several properties. The key with
the key name ending with slapd/threads/listener has two properties as shown in
lines 2 and 3. The property name is propertyN and property value is propvalueN .
The string propvalueN has a syntax according to Ψ(propertyN). N

Configuration Settings

For configuration settings we do not necessarily need metadata nor properties. We use
the following grammar for configuration settings:

〈configuration settings〉 ::= { 〈configuration setting〉 { ‘←↩’ } } 〈configuration setting〉

〈configuration setting〉 ::= 〈relative key name〉
[
‘=’ [ 〈value〉 ]

]
[ 〈comment〉 ]

〈comment〉 ::= { ‘␣’ } ‘;’ C
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Absence of 〈value〉 means that the value is an empty string and the absence of both ‘=’
and 〈value〉 means that the value is ε. Assignment with =, as opposed to :=, is reserved
for key-value pairs denoting configuration settings in configuration files. This way, it is
apparent for the reader that we are in a different meta-level and talking about concrete
settings for applications. For this book, we assume that the values do not have trailing
spaces nor red semicolons ‘;’.
Example 3.30. By the use of the grammar above, we can specify configuration settings:

1 slapd/threads/listener=1

2 slapd/key=1 ; comment

3 slapd

In the first line, we define that the key, identified with the relative key name slapd/
threads/listener, has the configuration value 1. The second line does the same with
the key name ending with slapd/key but with a comment ‘ comment’. In the third
line, we define the key name ending with slapd to have the value ε. N

3.1.7 Sort Order and Hierarchy

Definition 3.31. We say a key x is below a key y iff the key name of x has the key
name of y as prefix separated with a slash:

below(x, y) =

 > if ∃s ∈ R : x.k = y.k++ ‘/’++ s

⊥ otherwise

Example 3.32. The function below(〈‘user:/slapd/threads/listener’, ε, {}〉,
〈‘user:/slapd/threads’, ε, {}〉) returns >. The function below(〈‘user:/slapd/
threads/listener’, ε, {}〉, 〈‘user:/slapd/key’ , ε, {}〉) returns ⊥. N

Definition 3.33. A subtree of a key x and a key set t is the key set s, which contains
all keys in t below x, as well as x. We call x the root of the subtree.

s = {y ∈ t | below(x, y) ∨ x = y} (3.3)

According to Definition 3.1 on page 84, we treat the special character / for the lexico-
graphical comparison of keys with ≤ differently: It is ranked first in the order of the
character’s precedence.2 Because of the special handling of /, keys not within a subtree
occur after keys within the same subtree.

2The implementation is efficient by separately storing key names modified in a way so that they are
correctly compared with memcmp.



96 CHAPTER 3. ELEKTRA

Example 3.34. Given the following key names:

1 a

2 a/a

3 a/b

4 a!a

Here a/a and a/b are below a. These three keys form a subtree with a as root. The
pure ASCIIbetical sort order3 would put a!a in the middle after a. Our chosen sort
order allows us to efficiently operate on a hierarchy, for example, to cut out a subtree.
We look up the key a, and keys below it (with respect to the hierarchy), are guaranteed
to be subsequent, if there are any keys below a. N

For iterating configuration settings, in most cases, the sort order of keys—within the same
hierarchy level—is irrelevant. If the order is important, we do not merely rely on how the
key was inserted in the key set. Instead the sort order is clearly visible within the key name.
We use a so-called array index to indicate the order between otherwise identical key
names or metakey names. Such array indexes are also used if we have several key names
for the same configuration setting. We use the following convention for array indexes:

1. The first array index is ‘#0’.

2. For the next array index, we increase the numerical part by incrementing it. If the
number of digits is increased by one, we add an underscore (‘_’) between ‘#’ and
the digits.

While the algorithm keeps the key set ordered by the array index with any radix, for
example, hexadecimal with the characters [A-F], we chose the decimal system. It is
trivial to know the quantity of ‘_’ for any number by counting the digits and decrement
the result. With this convention we generate array indexes in a compact syntax, readable
and writable by humans, while still using the sort order of decimals representing the
array index. Given 〈number〉 as decimal natural number ≥ 0, the grammar is:

〈array index〉 ::= ‘#’ { ‘_’ } 〈number〉
3Sort by string comparison, i. e., the ASCII value of the characters.
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Example 3.35. The array index 1 is written down as ‘#1’, 10 is written down as ‘#_10’,
100 is written down as ‘#__100’. The sort order of these key names is:

1 #1

2 #_10

3 #__100

N

Example 3.36. To sort the key names ending with a, b and c in reverse order, we
would use the following key names with array index from 0 to 2:

1 #0/c

2 #1/b

3 #2/a

N

3.2 User’s View

Both system administrators and developers are users of Elektra. In this section we
consider these users together and frame Elektra with a focus of context-aware config-
uration from their point of view. As shown in Figure 3.4, their main interactions with
Elektra is by using frontends and SpecElektra. In this section we describe:

• How users get and set configuration settings and specifications (i. e., including
specifications written in SpecElektra).

• How users map configuration files into a unified view for all applications.

• How users share configuration settings.

• How users enable context-aware configuration.

Figure 3.4 shows what is required from users to facilitate Elektra: The blue parts need
to be supplied by users. Elektra does not help in implementing the application logic.
It does, however, disentangle the application from source code specific for configuration
access. Applications use LibElektra via so-called frontends. SpecElektra specifies
both the frontends and LibElektra. We will use a key set to represent SpecElektra.
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Figure 3.4: The Elektra framework from the users’ perspective.

Furthermore, key sets are used for communication between any parts of Elektra, such
as between frontends and LibElektra.

3.2.1 SpecElektra

SpecElektra is a modular configuration specification language for configuration
settings. In SpecElektra we use properties to specify configuration settings and con-
figuration access. SpecElektra enables us to specify different parts of Elektra.

Plugins are filters, sinks, and sources processing a key set. We aim at SpecElektra
to be as modular as possible and make extensive use of plugins:

1. SpecElektra does not have any built-in feature, all features are (or can be)
implemented as plugins.

2. Elektra works completely without SpecElektra’s specifications.

3. Configuration specifications are present within the execution environment. Thus
any tool and plugin can introspect and use the specifications.

Semantics

Several tools and plugins read and implement SpecElektra’s specifications. A meta-
specification within Elektra defines which property is used by which tool and plugin.
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Here we characterize how semantics are defined. We elaborate on SpecElektra’s se-
mantics in the rest of this chapter.

In this book, we focus on the central properties and tools. Users can extend Spec-
Elektra by additional properties, but cannot redefine existing ones. We mainly dis-
cuss possibilities SpecElektra offers and only elaborate on non-obvious features. Be-
cause every property has a grammar assigned by Ψ, the syntax of property values is
formally specified. Semantics of the properties are described—usually informally—in
the meta-specification of SpecElektra and in this book. Plugins implement the se-
mantics of the properties. The semantics of the configuration values are described—
then again mostly informally—by the properties. Applications implement the semantics
of the configuration values.

Example 3.37. We give an example of a trivial feature to clarify how the specification
is used:

1 [slapd/threads/listener]

2 description:=Text to be displayed in application.

The specification uses the INI-like syntax introduced in Section 3.1.6. The syntax of
the text to the right of := is given by Ψ(description), which is C (any text). The
property puts no constraints on the key slapd/threads/listener. If applications
present the configuration setting to the user, however, the property description shall
be part of this presentation. Applications have access to the properties in the same
way as the tools and plugins have, therefore they are candidates to give properties
meaning. Furthermore, the application behavior must be in accordance with the semantics
described in the description.

Different from Example 3.37, other properties than description usually affect the con-
figuration access behavior. The semantics of the individual properties are combined by
sequential enforcement of each property. Before introducing more properties, we give an
overview how the configuration access works.

3.2.2 Key Database

LibElektra implements a key database. It provides a unified, system-wide, key-value-
based view of the execution environment. The view contains all previously defined names-
paces, including namespace spec, which holds SpecElektra’s specifications. The key
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database is the part shared between all applications in a system and consists of sev-
eral backends. Each backend maps a key set from a configuration file into the key
database with the help of plugins. The minimal goal of a backend is to parse and serialize
configuration files.

To realize several backends LibElektra splits and merges the key set in such a way
that each backend receives only the part of the key set it is responsible for. At least every
namespace is separated in a different backend. The key database can be seen as a tiny
middleware between plugins and applications [227].

LibElektra’s main purpose is to present configuration settings and specifications uni-
formly. To do so, LibElektra abstracts over all configuration sources (i. e., key set’s
namespaces) of the execution environment. All applications and tools with the same
context see the same configuration settings and specifications.

configuration
specifications

configuration
settings

load, store

execution
environ-

ment

KeySet

spec
namespace

no
n-
sp
ec

na
me

sp
ac
es

specify

key database

Figure 3.5: The execution environment stores key sets of all namespaces. The namespace
spec specifies the other namespaces (proc, dir, user, and system). Arrows indicate
data flow of key sets.

As shown in Figure 3.5 the key database contains configuration specifications in the
namespace spec. All other namespaces are specified by this single specification written
in SpecElektra. Keys with the same key name refer to the same configuration setting.
If key names only differ in the namespace, the key in the namespace spec specifies the
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other keys. We enable system administrators to change configuration specifications with
the same tooling as used to modify configuration settings.

Example 3.38. Let us assume that the following configuration setting is stored in a
configuration file on a system:

1 slapd/threads/listener=4

If this configuration file is read from a system’s configuration source (and assuming
that the configuration setting is not found in any of the other namespaces) it is part
of the namespace system. As result, we get the key with the name system:/slapd/
threads/listener. For configuration specifications, we assume the namespace spec:

1 [slapd/threads/listener]

2 description:=Example from the introduction

The configuration specification has the key name spec:/slapd/threads/listener
and refers to the configuration setting above. N

API

LibElektra provides access to the key database by synchronizing the execution envi-
ronment and an in-memory key set. The API to access the key database is minimalist
and consists of only four functions. We abbreviate the key database with kdb and use
KDB as its type in the implementation.

kdb.open(): The first step is to open a connection to the key database.

Because LibElektra is a library, it needs to bootstrap itself during the launch of
every application. First LibElektra reads from an initial configuration file from a
hard-coded path. Given the content of this initial configuration file, LibElektra
knows about the rest of the execution environment. The initial configuration file
contains information about which plugins must be used [227].

kdb.get(KeySet): The application (initially) fetches and (later) updates its configura-
tion settings as a key set of type KeySet from the execution environment by one
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or many calls to kdb.get. If all relevant configuration files are unmodified since
the last invocation, kdb.get will do nothing.

kdb.set(KeySet): When a user finishes editing configuration settings, kdb.set is in
charge of writing all changes back to the key database. This function atomically
persists a whole key set in involved parts of the execution environment. In the case
of an error no action takes place.

kdb.close(): The last step is to close the connection to the key database.

Elektra does not provide extra functions for other features with the consequence that
every feature related to the key database must be either part of kdb.get, kdb.set, or
ksLookup. Configuration settings not conforming to the configuration specification are
rejected by plugins in kdb.set. Applications that want to validate configuration settings,
must serialize configuration settings to configuration files. This principle encourages us
to serialize configuration settings early. Applications learn about problems via errors
from kdb.set. As long as only Elektra is used, the key database is always coherent
with its configuration specifications.

Within kdb.set, plugins notify other applications that the configuration settings have
been updated. Other applications listening to these notifications use kdb.get to update
their configuration settings. This simple mechanism keeps the in-memory key set in sync
with the external representation of a key set in the execution environment.

Example 3.39. A user synchronizes the application’s KeySet with the execution envi-
ronment using the following source code:

1 KDB kdb;

2 KeySet conf;

3 void onNotification () // triggered by other processes

4 {

5 kdb.get (conf);

6 } // <continues on the next page>
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7 int main ()

8 {

9 kdb.get (conf);

10 // work with conf...

11 kdb.set (conf);

12 }

Line 11 notifies other processes and triggers onNotification there. N

3.2.3 Mounting

For better modularity, the key database consists of many backends. In most cases a
backend is responsible to parse and serialize a single configuration file. Each of the
backends—in turn—is built up by several plugins. Here we introduce how users decide
about backends and plugins using SpecElektra.

Mounting integrates a backend into the key database [236]. Hence, Elektra allows
several backends to deal with configuration files at the same time. Each backend is
responsible for its own subtree of the key database. To integrate a backend into the
key database, we mount it by using the property mountpoint in the configuration
specification. Its property value is the relative file name to mount. The key that has
the property mountpoint is the root of this subtree. Subsequent use of kdb.get
and kdb.set assume configuration settings below the mountpoint in the respective
configuration files.

Example 3.40. To specify mountpoints, we use the following configuration specification:

1 [sw]

2 mountpoint:=configfile.txt

3 [sw/libreoffice]

4 mountpoint:=libreoffice.conf

These properties are read by Elektra’s tools. The configuration specification achieves
that two new backends are instantiated in the key database. These backends are used for
all namespaces, except the namespace spec. If an application accesses keys in the key
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database below /sw/libreoffice, the application receives the configuration settings
of libreoffice.conf. Otherwise, if an application accesses other keys below /sw,
the application receives the configuration settings of configfile.txt. For the key /,
Elektra always assumes the property mountpoint to be present, the property does
not need to be specified by the system administrator.

/

/sw

/sw/apache

/sw/libreoffice

/hw

/sw/apache/httpd

/sw/libreoffice/writer

/sw/libreoffice/calc

Figure 3.6: Mountpoints in Elektra. Arrows indicate that keys are below another key.
Bold keys are mountpoints.

In Figure 3.6 three subtrees are written in bold: /, /sw, and /sw/libreoffice. Back-
ends take care of the configuration settings in their respective subtree. The subtrees
are nested, for example, /sw/libreoffice/writer belongs to the mountpoint /sw/
libreoffice, while /sw/apache/httpd belongs to /sw. N

The property mountpoint abstracts over configuration settings. Applications do not
need to take care about how and where their configuration settings are stored. It is the
task of the backends to implement these details.

Relative key names are relative to their mountpoint. If we mount the configuration
specification to a different root, also the configuration settings get different key names.

Example 3.41. If we mount the configuration specification from Example 3.40 to
spec:/test4 then, instead of /sw/libreoffice/writer, the resulting configuration
setting is /test/sw/libreoffice/writer. The key /hw, however, is not concerned
about this change. It still belongs to a default mountpoint always present at the
namespaces’ root. N

The property mountpoint is usually specified by:

4It must be of namespace spec because it is a configuration specification.
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• The system administrator who prefers separated configuration files.

• Developers that need or want their applications to continue using their previous
configuration file. Setting the property is done during the installation process.

Despite the different namespaces in which a configuration setting can be, users need
access to properties of any key they currently work with. Here we describe a metadata
abstraction. At run-time the properties specified in the namespace spec are copied5

as metadata into the configuration setting of all namespaces. Applications and users
facilitate this metadata to learn about configuration specification.

configuration
settings

configuration
specifications

copy metadata

configuration access

result

Figure 3.7: Abstraction of Metadata. The large circles are key sets, the smaller ones keys.
Configuration values are boxes and metadata are black dots.

As we see in Figure 3.7 in the result the abstraction makes it irrelevant whether metadata:

• has been copied from the properties (i. e., metadata in the configuration specifica-
tions), or

• is directly part of configuration settings.

Example 3.42. Let us assume we have the configuration specification from Exam-
ple 3.37:

5Copying metadata is efficient by referring to already existing metakeys.
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1 [slapd/threads/listener]

2 description:=Text to be displayed in application.

When an application accesses the key with the key name /slapd/threads/listener
in any namespace, the property description is part of its metadata. N

In the rest of this book, we assume for the configuration settings and specifications given
in listings that

• configuration specifications are mounted at the root of the namespace spec,

• configuration settings are mounted at the root of any other namespace, and

• properties are available as metadata in every key related to a configuration setting.

3.2.4 Context Specifications

Context specifications are properties of SpecElektra, which make configuration
settings more context aware. They are implemented in frontends (generated by Gen-
Elektra) and in backends (implemented in LibElektra).

Namespaces and cascading lookup provide a form of context awareness. For example,
they allow the configuration settings to be aware of the current user (namespace user).
Their context awareness is restricted by fixed rules and the fixed number of namespaces.
Here we generalize the concept.

For system administrators a central mechanism to work with Elektra is changing
properties, i. e., modifying metadata in the namespace spec. We show how system
administrators—by writing context specifications in SpecElektra—share configura-
tion settings between applications. Sharing configuration settings is a kind of con-
text awareness: We enable applications to be aware of configuration settings of other
applications. We only assume that applications, receiving configuration settings, use
the key database.

The properties below achieve this goal. They are implemented by ksLookup and are
thus part of the key database (implemented in LibElektra). The priority of prop-
erties is always fixed and cannot be changed by changing the order of properties in the
configuration specifications. Thus we sometimes need properties with identical semantics
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but different priority. Some properties permit us to use array indexes that enable users to
choose order within the functionality of that property. Lower array indexes have higher
priority. We indicate support for array indexes by adding a /# suffix. In the order of
priority (higher priority first), the properties for context awareness are [227]:

context specifies configuration settings to be preferred to the key itself to better fit the
context. With this property we aim at having semantics of contextual values for
configuration settings. We discuss its syntax and semantics in Section 3.2.6. It is
implemented using the extension interface lookupByExtension of ksLookup
as explained in Section 3.3.1.

override/# specifies configuration settings to be unconditionally preferred to the key
itself. This property enables users to create links between configuration settings.
The grammar assigned to this property value by Ψ(override) is the grammar of
key names, as shown in Section 3.1.2.

namespace/# defines alternative namespace priorities using array indexes for the spec-
ified key. The grammar of the property value is N .

fallback/# specifies configuration settings to be used if the key itself is only present
in the namespace spec, and not in any other specified namespace. As in property
override, we create a link between keys and use the grammar of key names.

default represents a value to be used if no key was found (including consideration of
the properties above). The property value is a string ∈ C, i. e., Ψ(default) 7→ C,
and is used as default value. Because property values cannot be ε, default values
cannot be ε.

Example 3.43. If system administrators want a configuration setting that:

• prefers the key /sw/pools/threads/listener if available,

• only considers the namespace system (and not proc, dir, and user), and

• has the configuration value 2 if the configuration setting is not found otherwise.

Then system administrators specify:
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1 [slapd/threads/listener]

2 default:=2

3 namespace/#0:=system

4 override/#0:=/sw/pools/threads/listener

The order of the properties in the configuration specification does not matter. The
property override has a higher priority than properties namespace and default

(as given in the list of properties before the example). We increase context awareness
using the property override. Without this specification, slapd would not be aware of
the configuration setting /sw/pools/threads/listener. We decrease the context
awareness of the namespaces: We do not consider the namespaces proc, dir, and user
for the key /slapd/threads/listener. Because the key /sw/pools/threads/

listener has no configuration specification, we will consider all namespaces there. N

3.2.5 Frontend

We already introduced features that are part of LibElektra (the backends). Features
in the frontend are part of the application and thus not part of the key database. When
adding features in the frontend we have to be careful: Applications do not always use
the same frontends. We could easily break the desired globally unified view that the key
database promises. Reasons to put functionality in the frontend nevertheless are:

• Performance.

• Ensure presence of configuration settings and specifications even when retrieving
configuration settings and specifications from the key database fails.

• Ensure type safety and improving the usability for developers, for example, directly
returning correct types.

• Supporting features where configuration settings need to differ in different parts of
an application.

Here we focus on the user’s view of type-safe access code for contextual values. We prefer
type-safe access code as frontends and avoid direct access to the low-level key-value
operations (ksLookup) of LibElektra. We call applications that use Elektra’s key
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database via one of its frontends elektrified. Figure 3.8 shows the architecture with code
generation used in elektrified applications. When using LibElektra in this architecture,
users need to:

• Write a specification in SpecElektra that defines the configuration access of their
application.

• Provide an elektrified source code for their applications that directly makes use of
the generated, type-safe frontends.

This architecture is the preferred way for newly written applications. In Section 5.4, we
will present an alternative architecture for applications without changing their frontend.

generates

delegate
w
ork

KeySet

access

SpecElektra
specification

type-safe
frontends

GenElektra code
generator

key database

access

elektrified
source code

uses

plugins
access

LibElektra

execution
environ-

ment

Figure 3.8: Architecture of Elektra with code generation. Bold, blue boxes need to be
provided by users of Elektra.

Code Generation

The code generator GenElektra reads SpecElektra specifications and emits high-
level APIs to be used in applications. GenElektra facilitates the key names to generate
unique API names. We use nested objects (accessed by . via a root object env) according
to the hierarchy levels of the key name. These objects are used like variables. Gen-
Elektra employs the following properties from SpecElektra:

type represents the type to be used in the emitted source code. The emitted variables
implicitly cast to the type given here. For property type, we use the common object
request broker architecture (CORBA) interface description language (IDL) data
types, which already have well-defined mappings for many programming languages.
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opt is used for short command-line options to be copied to the namespace proc. Here
we can choose between implementations in the frontend and backend with the
trade-off performance versus flexibility for system administrators.
Example 3.44. With the property opt:=p, the configuration setting with this
property can be changed by adding the command-line option -p. N

opt/long is used for long command-line options, which differ from short command-line
options by supporting strings and not only characters.

restrict/write yields compilation errors when developers assign a value to a contextual
value within the program.

default enables us to start the application even if the backend does not work. Gen-
Elektra uses it to hard-code default values into the application. If the backend
is available, the property default is interpreted by the backend. Without the
property default, the configuration value can be missing (ksLookup can re-
turn ∅). In the high-level APIs the user would get a run-time error when trying
to access such a configuration value. Thus if the property default is not avail-
able, GenElektra will not generate a contextual class for the given configuration
specification to protect the user from run-time errors.

Example 3.45. The specification [foo/bar] alone (without properties) does not gen-
erate any code because property default is not given. Calling ksLookup on such a
configuration setting is not safe and can return ∅ (indicating the not-found key). N

Example 3.46. With the specification:

1 [foo/bar]

2 default:=Hello

3 type:=string

4 opt:=b

5 restrict/write:=1

GenElektra gives the user read-only access to the object env.foo.bar:

1 std::cout << env.foo.bar;

2 env.foo.bar = "Other world"; // compilation error
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Line 1 prints the configuration value of /foo/bar or "Hello" (without quotes) by
default. When invoking the application with application -b "This world", the
application would print "This world" (without quotes). Line 2 leads to a compilation
error because of the property restrict/write. N

3.2.6 Contextual Values

The most expressive part of the context-aware lookup algorithm is the layer-based
lookup. It enables configuration access points to have semantics of contextual values.
Context-aware configurations are configuration settings in which context-aware look-
ups are used. We provide two types of context-aware configurations, implemented in
frontend and backend, respectively. Both types share the following syntax:

Definition 3.47. Layer values are relative key names ∈ R. Layer names are non-
empty, clean strings ∈ C′≥1 embedded in a context specification as given in the following
grammar (we use 〈basename〉 and 〈hierarchy level〉 from Definition 3.5 on page 85 and
N from Definition 3.7 on page 86):

〈contextual key name〉 ::= [ N ‘:’ ] ‘/’ { 〈contextual hierarchy level〉 ‘/’ }
〈basename〉

〈contextual hierarchy level〉 ::= 〈context placeholder〉 | 〈hierarchy level〉

〈context placeholder〉 ::= ‘%’ 〈layer name〉 ‘%’

Every hierarchy level is a contextual hierarchy level and every key name is a contextual
key name, thus Definition 3.47 generalizes Definition 3.7 on page 86.

Both forms of contextual values (frontend and backend) share the following semantics:

Definition 3.48. Layer is a mapping from layer names to layer values and represents
the current context. The function context.evaluate replaces all context placeholders
with layer values given by the layers. If no layer name is found, or the layer value is
empty, the layer value % will be used. We call a layer active if the layer does not have
the layer value %.

Example 3.49. Given the contextual key name /foo/%bar%/hey, depending on the
layer value of the layer name bar, the following incomplete list of key names are valid
contextual interpretations:
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1 foo/%/hey= ; no such layer, or no layer value

2 foo/bar/hey= ; layer value bar

3 foo/foo/hey= ; layer value foo

4 foo/some/more/hierarchy/hey=

The layer value in line 4 is ‘some/more/hierarchy’. N

Backend

In the first type of contextual values the meta-function Ψ assigns the grammar of con-
textual key names as given in Definition 3.47 on page 111 to the property value of the
property context. When looking up such a key, LibElektra substitutes the context
placeholder and tries to search the resulting key name. Similar to the property override,
the key is preferred to the configuration value of the original key.

For the property context, layers are specified within the key database. The layer names
are wildcards to discriminate between different possible keys.

Example 3.50. We define a context-aware link using the property context:

1 [foo]

2 context:=/foo/%bar%/hey

3 override/#0:=/foo/hey

When looking up foo, depending on the layers, key names in the form as given in Exam-
ple 3.49 are looked up. On failure, the lookup continues with the property override

because of the priorities as specified in the list of properties in Section 3.2.4. N

Frontend

In the second type of contextual values we do not use properties. Instead we directly use
contextual key names as key names in the configuration specification. In the configuration
settings’ syntax, we denote the contextual key names without their namespace spec. It
is the task of the frontend to call context.evaluate so that context placeholders are
resolved before calling ksLookup. LibElektra provides a predefined class Context,
which is the interface for users to dynamically activate and deactivate layers [235]:
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1 class Context : public Subject

2 { // for the frontend:

3 string evaluate(string const & spec) const;

4 public: // for the user:

5 template <typename Layer> void activate(...);

6 template <typename Layer> void deactivate(...);

7 template <typename Layer> Context & with(...);

8 template <typename Layer> Context & without(...);

9 ...

10 };

The purpose of the class Context is to govern the layers in a data structure (i. e., not
in the key database). To change the context, the class Context provides four methods
for the user:

activate: Activates a layer without scope.

deactivate: Deactivates a layer without scope.

with: Activates a layer in a dynamic scope.

without: Deactivates a layer in a dynamic scope.

While the methods activate and deactivate affect the rest of the execution (until
another context change is done), the methods with and without are bound to their
dynamic scope.

In Chapter 4 we describe the semantics of these methods and different ways how the
user specifies the typename Layer required in the interface of Context.

Contextual classes emitted by GenElektra implement contextual values and can
directly be used by the developer. In generated classes, we use the naming conventions for
nested objects as described in Section 3.2.5 but with the context placeholders removed.
Contextual classes implement contextual values.
Example 3.51. If we change Example 3.46 to have the contextual key name [foo/
%language%/bar], we get a contextual value env.foo.bar. Then the output differs
depending on the layer value of language. Assume the configuration settings:
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1 foo/english/bar=Hello

2 foo/german/bar=Hallo

With the layers {language 7→ german}, the application will output "Hallo" (without
quotes). N

Frontends versus Backends

Here we discuss differences between contextual interpretations in the backend and in the
frontend. Contextual key names—used as key names in configuration specifications—are
only useful if used along with frontends. Such key names cannot be resolved within
backends: They are not valid key names and thus cannot be looked up. The advantage
of frontends’ contextual values is that layers can be restricted within dynamic scopes.

For the lookup within the backend, the frontend is completely unaware that a context-
aware lookup takes place. Thus the property context provides a stronger abstraction.

3.3 Backend

In this section we reflect upon the system’s view of Elektra, with a focus on the key
database. We go into the details of the lookup algorithm with its two main helper func-
tions lookupBySpec and lookupByExtension implementing the already explained
properties. In previous work we discussed an earlier version of the lookup algorithm [227].
After explaining the details of the metadata abstraction, we discuss how plugins are
assembled to backends.

Elektra already has many predefined plugins as shown in the figure on page 183.
Users add further plugins to extend Elektra’s functionality. The plugins we use in
the examples are implemented. For brevity, we sometimes shorten information about
plugins in the examples. For the full contracts please refer to the source code repository
at https://git.libelektra.org.

3.3.1 Layer-based Lookup Algorithm

The layer-based lookup facilitates layers using context.evaluate. Layer-based
lookup is a special form of the context-aware lookup.

https://git.libelektra.org
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We use l ∈ K, z ∈ K∅, c ∈ K, p ∈ 〈property name〉, and i ∈ 〈array index〉. Let us start
with defining small helper functions:

lookupProperty (l, p) → z returns a new key z, where z.k = l.µ(p), which is the
property value from the property name p. The function returns ∅ if the property
is not present in l.

lookupByKey (c, l) → z, where z.k = l.k. The function returns ∅ if the key name is
not present in c.

length (l, p) → i returns the last array index of the property name p in l. The prop-
erty name p needs to contain a #, which indicates an array index. If no array
index is found, a special value is returned that avoids iterations of a for loop.
The loop for (i: "#0" .. length (l, p)) iterates over all array indexes
present in l.µ.

The layer-based lookup is implemented as extension point lookupByExtension intro-
duced in Section 3.1.5:

1 Key lookupByExtension (KeySet c, Key l, Key specKey)

2 {

3 if ((specKey == ∅) || !(l is of namespace ε)) return ∅;
4 Key k = lookupProperty (specKey, "context");

5 if (k != ∅)
6 {

7 k.k = context.evaluate (k.k);// evaluate property value

8 k = lookup (c, k); // recursion to lookup algorithm

9 }

10 return k;

11 }

The key specKey is the key spec :/ l. In line 3 we handle invocations of the extension
interface we do not need to implement for a layer-based lookup. In line 4 we check for
the presence of property context. If the property is available, in line 7, the function
context.evaluate replaces the context placeholders. Then we recursively descend
with the new key name (line 8). In line 10 we return the found key or ∅, and let the
caller continue with the cascading lookup [232].
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3.3.2 Specification Lookup Algorithm

The algorithm lookupBySpec implements the search logic for the properties in the
cascading lookup. Let us add further helper functions. The first helper implements the
properties override and fallback (as specified with type):

1 Key lookupByLink (KeySet c, Key specKey, string type)

2 { // type is either "override" or "fallback"

3 for (i: "#0" .. length (specKey, type ++ "/#"))

4 {

5 Key k = lookupProperty (specKey, type ++ "/" ++ i);

6 k = lookup (c, k); // recursion

7 if (k != ∅) return k;

8 }

9 return ∅; // not found

10 }

In the loop starting on line 3, we consider all array indexes of the links. If we find a link,
we recursively look it up (line 6). If the lookup was successful, we return the found key
(line 7).

We already discussed the exhaustive search of all namespaces in Section 3.1.5:

1 Key lookupNamespaces (KeySet c, Key l)

2 {

3 Key k = lookupByKey (c, "proc" :/ l);

4 if (k == ∅) k = lookupByKey (c, "dir" :/ l);

5 if (k == ∅) k = lookupByKey (c, "user" :/ l);

6 if (k == ∅) k = lookupByKey (c, "system" :/ l);

7 return k;

8 }

Evaluating the property namespace/# is similar to the algorithm lookupByLink. The
behavior on absence of the property is different: Instead of doing nothing we exhaustively
search all namespaces using the function lookupNamespaces specified directly above:
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1 Key lookupByNamespace (KeySet c, Key l, Key specKey)

2 {

3 if (lookupProperty (specKey, "namespace/#0") != ∅)
4 {

5 for (i: "#0" .. length (specKey, "namespace/#"))

6 {

7 k = lookupProperty (specKey, "namespace/" ++ i);

8 k = lookupByKey (c, k.k :/ l);

9 if (k != ∅) return k;

10 }

11 }

12 else // if no property namespace exists

13 {

14 k = lookupNamespaces (c, l);

15 if (k != ∅) return k;

16 }

17 return ∅; // not found

18 }

To implement the properties defined in Section 3.2.4 (except properties context and
default) we only need to call the functions in order of priority:

1 Key lookupBySpec (KeySet c, Key l, Key specKey)

2 {

3 Key k = lookupByLink (c, specKey, "override");

4 if (k == ∅) k = lookupByNamespace (c, l, specKey);

5 if (k == ∅) k = lookupByLink (c, specKey, "fallback");

6 return k;

7 }

The method lookupBySpec is only relevant within a cascading lookup and if a specKey
is present.
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3.3.3 Lookup Algorithm

1 Key lookup (KeySet c, Key l, Key specKey)

2 {

3 Key k = lookupByExtension (c, l, specKey);

4 if (k == ∅ && !(l is of namespace ε))

5 {

6 return lookupByKey (c, l); // non-cascading lookup

7 }

8 if (k == ∅ && specKey != ∅)
9 {

10 k = lookupBySpec (c, l, specKey); // cascading lookup

11 }

12 if (k == ∅) k = lookupNamespaces (c, l);

13 return k;

14 }

We see (because of the branch starting in line 4) that the function lookup supports the
two already-discussed forms of lookups: cascading and non-cascading lookups. Because
the function lookup calls lookupByExtension and lookupBySpec, all properties
are handled recursively. As final helper function, we define lookupPropertyAsValue
(l, p)→ z that works similar to lookupProperty but with the property value used as
value and not as key name. The record z has the following fields:

k is the name of l (i. e., l.k), and
v is the property value of the property name p as found by l.µ(p).

Now we have all functions ready to finally define the algorithm ksLookup:

1 Key ksLookup (KeySet c, Key l)

2 {

3 Key specKey = lookupByKey (c, "spec" :/ l);

4 Key k = lookup (c, l, specKey);

5 // <continues on the next page>
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6 if ((k == ∅) && (l is of namespace ε) && (specKey != ∅))
7 {

8 k = lookupPropertyAsValue (specKey, "default");

9 }

10 return k;

11 }

The last step (line 6) of the lookup algorithm is to use the default value if everything
else failed: The property default is exclusively considered on top-level of the recursion.

3.3.4 Abstraction of Metadata

Within Elektra both configuration settings and specifications are represented by a
key set. In Section 3.1.6 we introduced separated syntaxes for configuration specifica-
tions (with property:=value) and configuration settings (with key=value). Here we
demonstrate why this separation of configuration settings and specifications is not visible
to plugins and applications in Elektra. We present an abstraction in which applications
and plugins cannot distinguish between syntaxes. In particular, the abstraction obscures
if metadata is separated or embedded.

Embedded Metadata

Many configuration file formats have metadata embedded. Often metadata is needed to
properly reconstruct the configuration file [225]. Elektra stores metadata within µ

of the keys.

Example 3.52. Let us consider the following JSON file [227]:

1 { "key": true }

In JSON a non-quoted true is a boolean, which is different from the string "true".
Elektra’s JSON plugin transforms this file into a key set, remembering JSON’s type
in the metadata type. As already mentioned, the values 0 and 1 represent a boolean in
Elektra. If we serialize this key set to XML syntax we get:
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1 <?xml version="1.0" encoding="UTF-8" standalone="no" ?>

2 <key type="boolean">1</key>
N

Abstraction over Embedded and Separated Metadata

In this book we keep configuration settings and specifications separated from each other.
From the user’s point of view the distinction is useful to easily get a grasp of the involved
meta-level. From an application’s point of view, however, it is useful if the metadata
comes along with the configuration setting, for example, when using a context-aware
lookup we do not know which key name we get. We do not burden applications and
plugins to distinguish between the embedded or separated form.

To abstract over these two competing ways, we utilize the following concept: We copy
all properties to the key’s metadata in all other namespaces. Elektra implements this
concept in the plugin spec. The key name of the spec key is used as pattern to be
matched against the other keys. Properties are copied to matching keys.

Example 3.53. Suppose we have the following configuration specification:

1 [slapd/threads/listener]

2 check/range:=1,2,4,8,16

And we have the following configuration setting mounted to namespace system:

1 slapd/threads/listener=4

Because of the matching key name, the plugin spec assigns the metadata check/range
:=1,2,4,8,16 to the key with the name system:/slapd/threads/listener. N

This abstraction makes it irrelevant for Elektra’s users if a specific configuration file
format supports metadata. The user always has the configuration specification in names-
pace spec as place to add metadata. After the plugin spec has copied the metadata, it
is indistinguishable to plugins if the metadata was already within the configuration file
or if it was copied from the properties. The plugin spec rejects configuration settings
and specifications if they are inconsistent.
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Example 3.54. Suppose we have the configuration file from Example 3.52:

1 { "key": true }

And additionally we have the configuration specification:

1 [key]

2 type:=long

Then we have a conflict: The JSON plugin adds the metadata type:=boolean and the
plugin spec tries to copy the property type:=long. The plugin spec rejects such a
combination of configuration settings and specifications. N

3.3.5 Plugin Configurations

In Section 3.2.2 we introduced the key database and briefly mentioned that plugins
implement the actual work of backends involved in kdb.set and kdb.get. The plugins
process key sets, i. e., they have a key set as input and output. In LibElektra we
linearly chain the plugins in a way that the output of one plugin is the input of the next.
Within a backend all necessary plugins are instantiated and placed in the order of the
instantiation within the chains for kdb.set and kdb.get. Plugins in the chain for
kdb.set are executed in the opposite direction than plugins in the chain for kdb.get.
Every plugin has a unique plugin name.

Plugin configuration is an additional key set used for configuration settings passed
to every plugin when it gets instantiated. Based on these configuration settings, plugins
enable or modify features. Each plugin decides which plugin configuration it supports.
We use the following grammar as compact syntax for plugin configuration:

〈plugin configuration〉 ::= 〈plugin configuration entry〉
{ ‘,’ 〈plugin configuration entry〉 }

〈plugin configuration entry〉 ::= R ‘=’ C′

Example 3.55. The plugin ini is a feature-complete INI configuration file parser.
The plugin configurations delimiter and array add support for INI dialects. To
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use + as delimiter and enable support for arrays, we pass the plugin configuration
delimiter=+,array=1 to plugin instantiation. N

3.3.6 Plugin Contracts

We specify the plugin’s behavior to guarantee that the plugin will work in a chain.
Contracts specify requirements and possible effects of a plugin. A contract is a set of
mostly formal clauses about plugins. Each clause is a mapping of a property name to a
property value. The property values have a grammar assigned from Ψ.

Many clauses are used in two complementing scenarios:

1. A clause, used within SpecElektra, indicates that functionality from the back-
end’s plugins is required. We use configuration specification syntax for such key
sets. Such a contract is valid between the user who wrote SpecElektra and the
plugins in the backend.

2. A clause being returned from a plugin indicates that a plugin has specific restrictions
and requirements towards other plugins. We use configuration setting syntax for
such key sets. The relative key name holds the property name and the key’s value
holds the property value. Such a contract is valid between the plugin itself and all
other plugins in the backend.

In this book we rely on the following clauses:

infos/provides: Specifies an abstraction of the plugin’s functionality. This clause is
only useful within plugins, and not in SpecElektra. We call plugins that of-
fer an abstract functionality provider of this functionality. Plugins that pro-
vide the same functionality shall use the same plugin configuration. The syntax
refers to the property value of the clause infos/provides and it is a grammar
〈clause infos/provides〉 ∈ G assigned by Ψ(infos/provides):

〈clause infos/provides〉 ::= 〈provider〉 { ‘␣’ { ‘␣’ } 〈provider〉 }

〈provider〉 ::= 〈provider part〉 { ‘/’ 〈provider part〉 }

The / within a clause of infos/provides creates a hierarchy of providers where
each part is also added individually as provider. The information we get from the
clause infos/provides is a set of providers and provider parts. Each member
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of the set is an abstract functionality provided by the plugin, i. e., every provider
part is also a provider.
Example 3.56. Plugins that parse and write INI files, have storage/ini in the
clause infos/provides of their contract:

1 infos/provides=storage/ini

In this case the plugin provides the abstract functionality {storage/ini, ini,
and storage}. Storage refers to the ability to parse and serialize configuration
files, and INI is a concrete configuration file format provided by this plugin. We do
not add ini/storage because storage is the more general term. N

infos/needs: Specifies which other plugins are needed for the plugin or SpecElektra
to work. For better abstraction such dependences are usually on providers, not on
concrete plugin names. We use it in both SpecElektra and plugins’ contracts,
with the grammar:

〈clause infos/needs〉 ::= 〈need〉 { ‘␣’ { ‘␣’ } 〈need〉 }

〈need〉 ::= 〈plugin name〉 | 〈provider〉

Example 3.57. The plugin simpleini is a plugin parsing and serializing a sim-
ple variant of INI configuration files. On its own, the plugin cannot handle values
that are ε (ε indicates a missing value within a present key, see Definition 3.1 on
page 84). The plugin simpleini needs the plugin null, which transparently
transforms ε to strings; thus the plugin simpleini specifies in its contract:

1 infos/needs=null

During run-time, the plugin null escapes all values that are ε so that for the
consecutively executed plugins all values are strings. The plugin simpleini then
processes strings, and does not need to be aware of ε. N

As we see later, it is unwanted to have the clause infos/needs within Spec-
Elektra. Nevertheless, we sometimes need it to work around incomplete con-
tracts of plugins.
Example 3.58. To manually add the plugin range to the backend, a system
administrator writes:
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1 [slapd/threads/listener]

2 check/range:=1,2,4,8,16

3 infos/needs:=range

Here we make sure that the plugin range is part of the backend. N

The clause infos/needs has no effect if the plugin or a provider of this plugin is
already part of the backend.

infos/plugins: Specifies which additional plugins shall be instantiated in the backend.
We use it to manually specify complete backends. This clause is useful for both
SpecElektra and plugins’ contracts. Different from the clause infos/needs
plugins are instantiated regardless of earlier instantiations.

〈clause infos/plugins〉 ::= 〈plugin specification〉
{ ‘␣’ { ‘␣’ } 〈plugin specification〉 }

〈plugin specification〉 ::= ( 〈plugin name〉 | 〈provider〉 )
[ ‘␣’ { ‘␣’ } 〈plugin configuration〉 ]

Example 3.59. Given the configuration specification:

1 [slapd/threads/listener]

2 infos/plugins:=ini delimiter=+,array crypto

We instantiate the INI plugin with the plugin configuration of Example 3.55. With
this plugin configuration, the plugin parses and serializes configuration files like:

1 key+value

2 key+value

3 key2+value

The duplicated key from lines 1 and 2 is treated as an array. We use the array indexes
as defined in Example 3.1.7 on page 96. The resulting key names are key/#0 and
key/#1. Furthermore, the plugin crypto ensures that the configuration values
are encrypted on the hard disk. N
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infos/status documents the development status and quality of the plugin in its contract,
for example, how well it is maintained, documented, reviewed and tested. It is a
sequence of qualitative attributes that are added or subtracted to a total score:

〈clause infos/status〉 ::= 〈Status〉 { ‘␣’ { ‘␣’ } 〈Status〉 }

〈Status〉 ::= 〈number〉 | 〈status name〉

A 〈number〉 is interpreted as number. The meta-specification globally maps each
〈status name〉 to a number. We add these numbers for the total score of a plugin.

Some of the statuses in the map are objective (such as if a plugin has dependences)
and are tested automatically but most statuses are at least partly subjective. For
subjective criteria, the status is considered to be in comparison with the other
plugins providing a similar functionality.
Example 3.60. Given the following mapping of status names to scores: {nodep 7→
250, unittest 7→ 1000,maintained 7→ 4000}, let us assume the plugin simpleini

has the clause infos/status = nodep unittest -500. We get the total
score 250 + 1000− 500 = 750. N

infos/metadata: Specifies which metadata is handled by the plugin. Because of the
metadata abstraction it does not matter if the metadata is directly present in
the configuration files or copied from the configuration specification. The clause
specifies a list of metadata the plugin handles, enforces, or executes:

〈clause infos/metadata〉 ::= 〈metadata〉 { ‘␣’ { ‘␣’ } 〈metadata〉 }

Example 3.61. The plugin range has the clause infos/metadata=check/

range. Let us recall the specification of our running example:

1 [slapd/threads/listener]

2 check/range:=1,2,4,8,16

At run-time the plugin spec copies metadata from the namespace spec to the
other namespaces. Thus the metadata check/range is present in the configuration
settings with the same key name:

1 slapd/threads/listener=5
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The plugin range guarantees to reject configuration values which are not in the
range given by check/range. Assuming that the plugin range is present in the
backend, the above configuration setting is being rejected. N

infos/ordering: Specifies a (possibly empty) list of plugins, which must not already
have been instantiated at the time when the plugin is instantiated for a backend.
Instead the specified plugins must be instantiated later. This clause is only useful
within plugins’ contracts and has the following grammar 〈clause infos/ordering〉
∈ G assigned from Ψ(infos/ordering):

〈clause infos/ordering〉 ::= { ‘␣’ { ‘␣’ } 〈plugin〉 }

〈plugin〉 ::= 〈plugin name〉 | 〈provider〉

In Example 3.62 we give a more complete example of a plugin’s contract and in Exam-
ple 3.63 we explain how we use the plugin within a configuration specification.

Example 3.62. The plugin rename renames key names to upper-case or lower-case
characters. It enables system administrators to use any capitalization for relative key
names in configuration files. The plugin rename has the following clauses in its contract:

1 infos/provides=filter/rename

2 infos/needs=

3 infos/status=maintained unittest nodep

4 infos/ordering=logging

5 infos/metadata=rename/toupper rename/tolower

In line 1 (i. e., the first clause) the contract states that the plugin provides rename and it
acts as filter, i. e., it transforms a key set. In line 2 the plugin states it does not need other
plugins to work correctly. Line 3 describes the development status, i. e., the maturity of
the plugin. With the mapping of Example 3.60 we have a score of 4000+1000+250 = 5250.
Line 4 specifies that logging plugins must be instantiated later in the chain. In the next
section, we describe how we assemble plugins in a backend using the clause infos/

metadata, as shown in line 5, which specifies which properties the plugin is able to
handle: The plugin rename enumerates rename/toupper and rename/tolower as
supported properties [230]. N

Example 3.63. With the plugin rename, we specify a mountpoint using:
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1 [slapd]

2 mountpoint:=slapd.conf

3 infos/plugins:=rename

4 [slapd/threads/listener]

5 rename/tolower:=

With this specification, system administrators can write the key threads/listener
with any capitalization in the configuration file slapd.conf:

1 ThreaDs/LisTeneR=5

The configuration setting above leads to a key with the name /threads/listener.N

3.3.7 Automatic Assembling of Plugins

The specifications in Example 3.63 and Example 3.58 are not as minimal as we would
like them to have. A system administrator would need to maintain a list of plugins in
the clauses infos/plugins and infos/needs for every mountpoint, which would
be cumbersome with non-trivial configuration specifications. In the following part, we
introduce automatic assembling which allows us to avoid these clauses in configuration
specifications. Elektra automatically assembles plugins by evaluating the properties
contained in the mountpoint’s configuration specification.

We use the following algorithm to return a valid set of plugins (a backend), which fulfills
all properties of a mountpoint [230]:

1 Backend assemblePlugins (KeySet keys)

2 {

3 Plugin plugins [] = {}; // <continues on the next page>
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4 for (key: keys)

5 {

6 for (prop: allProperties (key))

7 {

8 Plugin p;

9 p = findBestPlugin (prop); // see Section 3.3.7

10 addIfMissing (plugins, prop, p);

11 }

12 }

13 topologicalSort (plugins, cmpBy ("infos/ordering"));

14 return Backend (plugins);

15 }

The function assemblePlugins is called with the mountpoint’s keys. The for loop in
line 4 iterates over all keys of the specification. For each key we iterate over the key’s
properties (line 6). In line 9 we find the best suitable plugin. If no plugin is found, we abort
the process because of an unhandled exception from findBestPlugin. In line 10 we
add the plugin p to plugins if the plugin’s property prop is not already handled by one
of the other plugins. The function addIfMissing needs to take care of properly adding
all dependences (i. e., as specified in clauses infos/needs and infos/plugins), thus
it can add more than one plugin to plugins. Line 13 ensures that plugins are in correct
order when instantiating them into the chain of plugins [144, 230]. In the topological sort
an exception is thrown if there is no valid order (circular dependences).

Example 3.64. With this approach to assemble plugins, we can simplify the specifica-
tion of Example 3.63 to:

1 [slapd]

2 mountpoint:=slapd.conf

3 [slapd/threads/listener]

4 rename/tolower:=1

Because we only have one plugin rename, this plugin is chosen. N
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Find Best Plugin

To select the best suitable plugin handling a property, we facilitate the clause infos/
status in the following algorithm [230]:

1 Plugin findBestPlugin (Property prop)

2 {

3 Plugin plugins [] = {};

4 plugins = findPluginsWithClause ("infos/metadata", prop);

5 if (plugins.empty ()) throw NoPluginFound ();

6 return max (plugins, cmpByScore ("infos/status"));

7 }

The function findPluginsWithClause invoked in line 4 finds all suitable plugins, i. e.,
those which have the property prop in their clause infos/metadata. In line 6, we
return the plugin with the highest ranking compared by the score of the contract’s clause
infos/status. We refrained from having a concept in which a hard-coded default
plugin (known beforehand) is returned in order to avoid assumptions about availability
of plugins. Our algorithm always determines the plugin that scores best among the
currently available plugins [230].

Example 3.65. Elektra has two plugins that have the clause infos/metadata 7→
check/network: the plugin ipaddr and the plugin network. They both implement
validation of IP addresses: plugin ipaddr using regular expressions, and plugin network
using the network resolver of the operating system (i. e., getaddrinfo). We use the
mapping of status names to scores from Example 3.60. The clause infos/status for
the plugin ipaddr is nodep (score: 500 + 250 = 750), and for the plugin network

is maintained unittest (score: 4000 + 1000 = 5000). Furthermore, we have the
following configuration specification given:

1 [slapd]

2 mountpoint:=slapd.conf

3 [slapd/ipaddr]

4 check/network:=
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Then findBestPlugin("check/network") returns the plugin network (which has
the maximum score), except on operating systems that do not have getaddrinfo. On
such operating systems the plugin ipaddr is used instead. In both cases, the resulting
plugin is chosen to be included for the mountpoint of slapd. N

3.4 Frontend

We elaborate on the abstraction to represent key sets in different ways. The abstraction
allows us to generate source code from configuration specifications. We start by creating
source code that instantiates in-memory, hard-coded key sets. Then we further extend
GenElektra until we are able to generate contextual values, as already introduced
from the user’s point of view in Section 3.2.6.

3.4.1 C Syntax

It is straightforward to define an alternative syntax for configuration settings and speci-
fications. Different from our previous syntax for configuration settings and specifications
in Section 3.1.6, we want the configuration settings and specifications to be valid C/C++
code. When compiled and executed, the result is an in-memory key set identical to the
one the source code was generated by. We keep the grammar shorter by having strict
spaces, assuming strings to be valid C strings, and not supporting comments:

〈KeySet〉 ::= ‘ksNew␣(’ { 〈Key〉 ‘,←↩’ } { ‘␣’ } ‘KS_END);’

〈Key〉 ::= ‘keyNew␣("’ 〈key name〉 ‘",←↩’ [ 〈Value〉 ] 〈properties〉 ‘KEY_END)’

〈Value〉 ::= { ‘␣’ } ‘KEY_VALUE,␣"’ 〈configuration value〉 ‘",←↩’

〈properties〉 ::= { { ‘␣’ } 〈property〉 ‘,←↩’ }

〈property〉 ::= ‘KEY_META,␣"’ 〈property name〉 ‘",␣"’ 〈property value〉 ‘"’

Example 3.66. Given the key spec:/slapd/threads/listener, with the config-
uration value 4 and the property default 7→ 1, GenElektra emits:
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1 ksNew (keyNew ("spec:/slapd/threads/listener",

2 KEY_VALUE, "4",

3 KEY_META, "default", "1",

4 KEY_END),

5 KS_END);

Let us assume the content of this source code is stored in config.c. Although we spec-
ified a grammar for configuration settings and specifications, we got valid C/C++ code.
We use this syntax to hard-code configuration settings and specifications in the frontend:

1 KeySet conf =

2 #include <config.c> // include above listing

3 kdb.get (conf);

If kdb.get in line 3 fails, the application nevertheless continues with the built-in con-
figuration settings and specifications from the generated file config.c. N

3.4.2 Contextual Value with Policies

The key set is a generic and widely useful data structure, but for most applications it is
too low-level to be directly used. Here we present an API for configuration settings by
providing configuration settings as if they were contextual values. As first step, we create
a user-defined type that emulates the common behavior of built-in, native data types.
We implement common behavior in the class Value, which is a part of LibElektra:

1 template <typename Type, Policies ...>

2 class Value

3 {

4 Type cache; // the configuration value

5 KeySet & ks; // the connected key set

6 // connected context; specified via policies:

7 typename Policies::ContextPolicy & context;

8 ... // <continues on the next page>
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9 public:

10 Value const & operator= (Type n); // assignment

11 Type operator++ (); // ... and all other operators

12 ...

13 };

The first template parameter of the class Value specifies the data type the contextual
value shall implement. Instances of the class Value can be used wherever this data
type is expected because of the operators defined in the lines starting at line 10. The
handle ks points to a connected key set to be used for ksLookup. The member variable
cache avoids repetitive use of ksLookup. When a class inherits from the class Value,
instances of the inherited class act like variables of native types.

The other template parameters are needed for Value’s policies. Policies is a mechanism
to specify extensions resolved at compile-time. Instead of hard-coding behavior, policies
determine behavioral variations. Different from aspect-oriented programming (where be-
havior is changed globally) every object of class Value can be instantiated with different
behavior. We use the C++ template mechanisms [6, 142] but the idea is applicable to
other programming languages that provide generic programming features. The use of
policies is an implementation detail, but we extensively utilize this extension mechanism
throughout Chapter 4.

Instead of emitting nearly-identical source code for every configuration setting, the code
generator only defines the policies if non-default behavior is specified via SpecElektra.
Other policies (not fixated by the code generator) are chosen by the developer. With the
policies correctly implemented, instances of the class Value are contextual values. The
following policies are the most important extension points in the class Value:

LockPolicy determines locking behavior of the class Value to support concurrent access
from several threads. In the default case, no locking occurs.

WritePolicy implements the property restrict/write. It specifies read-only restric-
tions for a Value. All operations that change the value of Value are guarded by
static asserts. If the policy is changed to be ReadOnlyPolicy, the compiler rejects
source code that tries to modify contextual values. ReadOnlyPolicy is a trivial
class defining a variable as true. If the variable is set, the static assertions fail. To
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prohibit any changes to a particular configuration setting, users set the property
restrict/write 7→ 1 (i. e., true) as already discussed in Section 3.2.5.

SetPolicy defines how the cache of the class Value’s instances is synchronized with the
key set. One of the design decisions of applications is the namespace of newly-created
configuration settings. This policy supports developers to select the namespace they
prefer for their application.

ContextPolicy determines the class Context to be used. The class Value directly
uses context.evaluate from this policy. The other methods of this policy are
intended for users as already discussed in Section 3.2.6. To give the user access to
context, the method context() of the class Value returns the context connected
to the respective Value. The return type of this method is a class representing
the context as specified by the policy ContextPolicy.

The policies mainly exist to implement properties, and for our extensions towards thread
safety and context awareness. Nevertheless, developers can take advantage of the policies:
Example 3.67. If developers instantiate a contextual value to be read-only, developers
specify the policy WritePolicy within the source code of the application:

1 Key k = keyNew ("/wrong/key/name", KEY_END);

2 Value <bool, WritePolicyIs<ReadOnlyPolicy>> value (ks, c, k);

3 value = true; // compilation error (value is readonly)

In line 2 we see that the CORBA data type boolean is mapped to the C/C++ type
bool. Line 3 causes a compilation error because in line 2 the ReadOnlyPolicy was
specified. The policy statically prohibits the use of the operator =. N

The class Value gives us already an improvement to directly using ksLookup. The user
does not have to fiddle with raw strings and thus gets some type safety. The class Value
alone, however, does not ensure to be consistent with the configuration specification. The
user can use Value differently than specified:

• connect key names with the wrong key names ("/wrong. . . in Example 3.67),

• use the wrong type (bool in Example 3.67), or

• use the wrong policies (ReadOnlyPolicy in Example 3.67).
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3.4.3 Generated APIs

We use the following generative grammar to generate code for every configuration speci-
fication. Here we use a simplified, non-hierarchical version and focus on solving the men-
tioned problems about type safety. The nonterminal 〈KeyName〉 is the relative key name,
without the slashes, written in CamelCase with capitalization for every hierarchy level:

〈simplified generated code〉 ::= { ‘class␣’ 〈KeyName〉
‘␣:␣public␣Value<’ 〈property value of type〉 〈Policies〉
‘>␣{’ 〈implementation of the class〉 ‘};’ }

For brevity we left out the 〈implementation of the class〉, which is responsible for con-
necting the correct key name. We use the idea of Section 3.4.1 and generate source code
containing the configuration specification. When constructing an object of Value, an
instance of the hard-coded specification is passed to the constructor.

Example 3.68. Given the configuration specification:

1 [slapd/threads/listener]

2 type:=long

3 restrict/write:=1

4 default:=1

The following source code is generated. The implementation includes a hard-coded copy
of the configuration specification passed to the constructor:

1 class SlapdThreadsListener : public Value<long,

2 WritePolicyIs<ReadOnlyPolicy>> {

3 ... keyNew ("/slapd/threads/listener",

4 KEY_META, "type", "long",

5 KEY_META, "restrict/write", "1",

6 KEY_END) ...

7 };

Generated APIs ensure:
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• Users cannot connect the wrong key names (line 3 of Example 3.68).

• Users cannot use the wrong type (long in line 1 and 4 of Example 3.68).

• Users cannot use the wrong policy (line 2 of Example 3.68).

Example 3.69. Developers still need to manually instantiate every contextual value:

1 KeySet config;

2 Context c;

3 long foo ()

4 {

5 // manual instantiation necessary:

6 SlapdThreadsListener slapdThreadsListener (config, c);

7 slapdThreadsListener++;

8 return slapdThreadsListener;

9 }

Afterwards, developers directly use the variable slapdThreadsListener as if it were
of type long. N

Another downside—next to the manual instantiation—is that the class and variable
names become too long.

3.4.4 Hierarchy

We extend GenElektra to generate nested classes and namespaces for every hierar-
chy level of the configuration specification. We aim at a hierarchy of classes that are
instantiated at a single place—all with the same key set and context. In the follow-
ing grammar we use the nonterminals 〈Hierarchy level〉 and 〈hierarchy level〉. They are
used to denoting one non-contextual hierarchy level from a key name capitalized or
non-capitalized, respectively.

Example 3.70. Given the key name [foo/%bar%/test], we have two strings for a
〈hierarchy level〉: the strings ‘foo’, and ‘test’. Furthermore, we have two strings for
a 〈Hierarchy level〉: the strings ‘Foo’, and ‘Test’. The string %bar% is a contextual
hierarchy level not included. N
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〈generated code〉 ::= { ‘namespace␣’ 〈hierarchy level〉
‘←↩{←↩’ 〈generated code〉 | 〈class〉 ‘←↩}←↩’ }
‘class␣Environment␣{’ { 〈class content〉 } ‘};’

〈class〉 ::= ‘class␣’ 〈Hierarchy level〉
‘␣:␣public␣Value<’ 〈property value of type〉 〈Policies〉
‘>’ ( ‘␣’ | ‘←↩’ ) ‘{’ { 〈class content〉 } ‘};’

〈class content〉 ::= { 〈hierarchy level〉 ‘::’ } 〈Hierarchy level〉
‘␣’ 〈hierarchy level〉 ‘;’

The root of the hierarchy is the class Environment, which is always generated. For
code generation, we recursively walk through all hierarchy levels in all configuration
specifications. We generate a class for every hierarchy level and a namespace for every
non-leaf hierarchy level. If a configuration specification for a hierarchy level is missing, we
use the special type Value <none_t>. These classes are placeholders for configuration
specifications to be introduced later. For every configuration specification with a subtree
containing more than itself, we create a 〈class content〉. For brevity, we left out details
of the 〈class content〉, such as constructors and public modifiers.
Example 3.71. Given the configuration specification:

1 [slapd/threads/listener]

2 type:=long

3 default:=1

We emit the following code structure:

1 namespace slapd

2 {

3 namespace threads

4 {

5 class Listener : public Value<long> {};

6 } // <continues on the next page>



3.4. FRONTEND 137

7 class Threads : public Value<none_t>

8 {threads::Listener listener;};

9 } // end namespace slapd

10 class Slapd : public Value<none_t>

11 {slapd::Threads threads;};

12 class Environment {Slapd slapd;};

Developers only need to instantiate the whole Environment env and then directly use
the variable env.slapd.threads.listener. The hierarchical nesting enables them
to pass any subtrees of the hierarchy to functions:

1 long foo(slapd::Threads const & threads)

2 {

3 threads.listener++;

4 Context & c = threads.context (); // access context

5 return threads.listener;

6 }

7
8 int main()

9 {

10 KeySet config;

11 Context c;

12 Environment env (config, c);

13 long x = foo (env.slapd.threads);

14 }

Here we only need a single instantiation of Environment to get access to the whole
execution environment (line 12). N

3.4.5 Contextual Substitution

Here we describe how the frontend takes care of replacing layer names. We use the syntax
as specified in Definition 3.47 on page 111. Layer names are written as part of the key
name, for example:
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1 [foo/%bar%/hey]

2 type:=long

3 default:=Hello

By the use of the class Context (see Section 3.2.6), we define dynamic scopes specifying
the presence of layers. The layers influence context.evaluate:

1 Context context;

2 assert (context.evaluate ("foo/%bar%/hey") == "/test/%/foo");

3 context.activate ("bar", "baz");

4 assert (context.evaluate ("foo/%bar%/hey") == "/test/baz/foo");

The parameters for context.activate here are the layer name and the layer value.6

We will discuss different mechanisms for layer specifications in Chapter 4. Whenever the
class Value synchronizes its cache, instances of the class:

1. call context.evaluate to get the key name from the contextual key name, and

2. call ksLookup using the key name resulting from Step 1.

Context Changes

We eagerly update the caches within the Value on context changes. We use the observer
pattern to push notifications regarding context changes to the contextual values [98].
The class Context acts as subject and the class Value (the contextual value) acts
as observer. Contextual values choose notifications they subscribe to. They do so by
checking for layer names in their specifications [235].

Example 3.72. The configuration specification [foo/%bar%/hey] specifies the con-
textual value hey and uses layer name bar. The configuration specification causes
a subscription to the class Context for changes of the layer bar. If a user calls
hey.context().activate("bar", ...), the contextual value hey will be notified.

Layer switches notify all contextual values that have a layer name in their key. At context
changes, the context placeholders are substituted.

6We omitted the template parameters.
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Example 3.73. We use the contextual value hey, specified as before with
[foo/%bar%/hey]:

1 assert (hey.getKeyName () == "/foo/%/hey");

2 hey.context ().activate ("bar", "baz");

3 assert (hey.getKeyName () == "/foo/baz/hey");

4 // value of "hey" can have changed here

In line 2 we activate the layer name bar with the layer value baz. Thus the context
placeholder %bar% is substituted with baz as shown in line 3. N

Assignment

The assignment of contextual values obey the expected semantics of variables. Addition-
ally, the contextual values are keeping the underlying key set up to date.
Example 3.74. Given the contextual value hey as specified in Example 3.73, we write:

1 assert (hey == ks.get<long> ("foo/%/hey"));

2 hey=3;

3 assert (hey==3);

4 hey++;

5 assert (hey==4);

6 kdb.set (ks);

We assume ks to be a key set and kdb to be an instance of KDB. The assertion of line 1
is valid as long the layer bar does not change (bar is the only layer influencing the
contextual value hey). The convenience wrapper ks.get does a ksLookup and lexically
casts the found value to the type given in <>. With kdb.set in line 6 we synchronize
the changed configuration setting foo/%/hey=4 to a configuration file using the key
database kdb. N

Identity

For contextual values we mainly use semantics as defined for variables in the respective
programming language. Usually contextual values are passed by reference. Then contex-
tual values have the same identity and they refer to the same instance of a KeySet and
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Context. We have an intuitive definition of identity: Two contextual values are identical
if they have the same memory address.

As explained by Tanter [275], the goal is to avoid side effects on copies of contextual
values visible to the rest of the system. To achieve that behavior, we need to construct
a new contextual value with a copy of the previous key set. The disadvantage is that
copying the key set disconnects the contextual value from the synchronization with the
execution environment. Thus Elektra does not support copy semantics.

We have an alternative with context-oriented programming. Users define new dynamic
scopes and layer names for every place where side effects must stay local.
Example 3.75. Given the contextual value local:

1 [%infunc%/local]

2 type:=long

3 default:=1

We define a dynamic scope:

1 int foo (Local & local)

2 {

3 local.context ().with ("infunc", "foo") ([&] {

4 // work with "local" in private scope

5 });

6 }

With C++ lambdas (the [&] {...} construct), we activate the unique layer value foo.
Then changes of the contextual value local are not visible outside the function foo

although we share an object (with the same identity passed by Local & local). N

3.4.6 Guarantees for Configuration Access

The set of validation specifications is a subset of configuration specifications. Vali-
dation specifications are properties that put constraints on keys. A validated key is
a key that complies with all its validation specifications. In a validated key set all
keys are validated.
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In the case of the absence of a key, ksLookup can return ∅. Most applications cannot
deal with ∅ and thus this return value is often unwanted. Instead applications want to
have guarantees that they receive configuration settings required by them. Guarantees
for the presence of a configuration setting is given by the property default. Thus the
property default is a validation specification. As already discussed in Section 3.2.5,
the property default specifies a default value to be used if otherwise no configuration
value of the given key name can be found.

configuration
file

Gen
Elektra

generated
program code

key= value

configuration
file

other namespace

spec namespace written in SpecElektra

[key]

type:= T

default:= D

KeySet

KeySet

class Key < T >

{ keyNew ( D ) };

application’s
source code

Key key;

// key = value

LibElektra

ksLookup

(adds
default
value D )

generates

Figure 3.9: The guarantees for configuration access are given by ksLookup, although
the specifications from generated source code might be used (if the configuration files are
not available on the system). Only the generated high-level frontend uses ksLookup but
not the user’s code. The blue part needs to be supplied by the user. The arrows indicate
data flow of key sets.

As we see in Figure 3.9 the property default (grey box D ) influences ksLookup
(shown on the left side, implemented in LibElektra) and frontends (shown on the right
side, generated by GenElektra). Usually, the default value is dynamically read from a
configuration file. If the backend or configuration file is not available or is inconsistent,
however, the hard-coded specification within the generated source code is used instead. By
comparing the built-in specification with the specification we got from the configuration
file we can easily detect problems—such as missing default values.

The introduced operations on the key database (implemented in LibElektra) guarantee:



142 CHAPTER 3. ELEKTRA

kdb.set: to write only validated key sets into the key database (see Section 3.2.2).
Keys not adhering to the validation specification are rejected with an error.

kdb.get: to only return a validated key set. Keys not adhering to the validation
specification are dropped.7

The code generator GenElektra guarantees for high-level APIs that:

• The configuration specifications are always available (see Section 3.4.3).

• Only cascading lookups are used to look up contextual values.

• For every generated contextual class the property default is present.

Lemma 3. When looking up keys in the high-level API, ksLookup never returns ∅.

Proof. To be able to look up a key in the high-level API, by definition the property
default must be present and a cascading lookup is used. As we see in the algorithm
ksLookup (Section 3.3.3), to use the property default three conditions need to be true:

k == ∅: can be false but then we already have a key and do not need the default.

l is of namespace ε: cannot be false because the code generator guarantees that
only cascading lookups are used.

specKey != ∅: cannot be false, because the code generator ensures that the configu-
ration specification is always present. The specKey’s presence (i. e., spec :/ l) is
implied due to the presence of the property default.

Default values are robust against context changes and reloading of configuration settings.
We are resistant against missing configuration settings: Even if the backend cannot be
used at all, we still have the specifications compiled in the application.

Example 3.76. We continue with Example 0.6 from page 16:
7This only happens if kdb.set is bypassed.
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1 [slapd/threads/listener]

2 check/range:=1,2,4,8,16

3 context:=/slapd/threads/%cpu%/listener

4 default:=1

5 description:=One thread is adequate for up to 16 CPU cores.

6 type:=long

Because of the presence of the property default the key slapd/threads/listener
can be looked up safely. The following values are tried in the given priority:

• Use the contextual value with the layer name cpu resolved in the backends. After
checking the specifications of the resulting key name, we look it up in any namespace:

– For 32 CPUs, the key name is /slapd/threads/32/listener.

– If a specification for this configuration setting exist, it will be considered.

– Otherwise, we try all namespaces for /slapd/threads/32/listener.

• Use the configuration setting /slapd/threads/listener in any namespace.

• Otherwise, the lookup returns the default value 1. N





CHAPTER 4
Frontends

As far as the laws of mathematics refer to reality, they are not certain; and
as far as they are certain they do not refer to reality.

— Albert Einstein

A reusable way to provide functionality to different applications is via APIs. API design
is known to be important and challenging [38, 47, 108, 253, 278]. For developers, ideally
the visible part of configuration access is reduced to an API. In this chapter, after a
short discourse of the history of Elektra’s APIs, we present three high-level, type-safe,
and context-aware APIs. Furthermore, we elaborate on design choices, discuss extensions,
find rationales for requirements, and tackle the research question:

RQ 5. Which concepts are needed for context-aware frontends to fulfill the requirements
as unveiled in Chapter 2?

4.1 History of Elektra’s APIs

Here we describe earlier versions of Elektra’s APIs and strive to answer RQ 5.1:

RQ 5.1. What is the design space for context-aware frontends?

Similar to programming languages [164] and data description languages [93] the design
space for configuration access is vast. Here we discuss design choices of Elektra’s API
and observations that lead us to the high-level APIs presented in this chapter.

Let us start with API functionality that survived unchanged for 13 years (2004–2017):

145
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1. It is useful to pass to the user only data structures exclusively accessible via API.
Among many advantages, the data structure allows internal reorganizations and
optimizations without changes visible to the user.
Example 4.1. The configuration access API getenv that does not prohibit direct
access to environ is a negative example. Because of direct access to environ,
getenv invocations give neither guarantees with respect to thread-safety nor about
availability of the pointer passed back. Furthermore, environ is easily tricked into
having duplicated entries. N

2. Elektra’s data structure is a set composed of individual records (and not only
strings) throughout the whole API’s lifetime. Doing so had many advantages for
advanced lookup strategies and for providing metadata.

3. It is a good idea to fully take control over memory management and always provide
pairs of functions for opening and closing resources. Even though the details changed
completely, all attempts to do otherwise failed completely. The abstraction proved
to be useful, for example, when introducing an mmap cache.

4. Elektra always emitted a data structure and never was event-driven [162]. Since
later versions, hooks for updates on changes have been possible via plugins. With
Elektra, applications do not have to implement their own data structure for
configuration settings. Other reasons for the data structure are its need for plugins,
conversions, and frontends.

4.1.1 Abstraction

The first API of Elektra offered operations that supported modifications of both
persisted single keys and persisted key sets. From an implementation point of view this
duality complicated the implementation of backends: Backends needed to implement
both ways. It is, however, difficult to partially serialize configuration files, as it would be
needed for setting a single key. We decided to put a focus on supporting configuration
files by only supporting key set (and not key) operations in the backend. Modifications
of single keys were moved to convenience APIs.

In Elektra 0.6 released on 30th March, 2006, Elektra described changes that shall
be applied to the current configuration settings. For example, the API user had to
explicitly remove keys if they were no longer wanted. This behavior was problematic for
configuration files.
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In Elektra 0.7 released on 17th October, 2008, we used a hybrid approach [225]: In
a key set we described the complete configuration settings as they shall be applied.
Furthermore, we described the differences of which keys were removed since parsing the
configuration files. This was an efficient method for configuration files as well as other
backends. Unfortunately, the API was not intuitive: To remove a key, one needed to mark
the key for removal instead of removing it from the key set. When simply removing keys
from the key set, it would not necessarily be removed in the backend. Furthermore, this
API required us to sort keys in the KeySet specially: The keys marked for removal had
to be separated from the other keys.

Since Elektra 0.8.0 [225] implemented in 2010, released on 5th May, 2012, we fully
migrated to a system, where the key set contains the complete configuration settings.
The correlation of in-memory key set and configuration files is an instance of the view-
update problem [94]. The state represents a view of the configuration files. Changes in
the state must be translated back to configuration files.

API evolution: To mitigate many problems of API evolution a proposal process proved
to be helpful. Instead of directly adding to the API, developers first need to propose their
change. This change is only accepted in a library that is specifically marked to contain
proposed enhancements. When the demand is clearly given and no further improvements
to the API are suggested, the API is moved to the core. The API stagnated and stayed
minimal, which eased the development of the bindings for C++, Python, Haskell, Lua,
Shell, Ruby, and Java; and we fulfilled the requirement:

Requirement 8. The configuration access API must be minimal and crafted carefully.

4.1.2 Context

Already before starting with the dissertation we had the intuition that key-value-based
configuration access APIs alone had limitations in combination with some requirements.
We wanted to implement a software stack for an embedded computer with a connected
camera. The cameras needed various non-trivial configuration settings in order to work,
for example, shutter speed and sensor sensitivity.

The challenging part was to easily switch connected cameras and add new cameras
without changing the source code. Every camera needed different configuration settings
but also had substantial overlap with configuration settings of other cameras.
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The naïve object-oriented way is to implement the configuration procedure of every
camera as subclass of a camera class. The configuration settings are for the camera
objects to be instantiated. This solution fails in the requirement of the ability to add new
cameras without source code changes. Furthermore, these classes would hardly describe
any behavior; They mostly describe different values for different cameras, which is not
the strength of object-oriented programming.

In an abstract viewpoint the connected camera is part of the configuration setting. But
from the viewpoint of the application it is not configuration settings: It is something given
from the outside world. We have to adapt our configuration settings to the constraints
we have from the environment. We did not find an elegant solution within object-oriented
programming for such constraints from the environment.

We came up with a solution by introducing an extension of profiles. In our extension,
developers specify several profiles: If a configuration setting is not found in the first
profile, the search continues in the second profile, and so on. So instead of looking up
configuration values directly, profiles determine which value we shall use. In retrospect this
feature has been a cascading lookup with manually specified namespaces. For example,
if we use ksLookup("shutter_speed", {"model","manufacturer"}) we look
up the shutter speed:

1. accounting for the profile model, and

2. if the shutter_speed was not found, we use the manufacturer profile as
fallback.

The API for profiles created a usability problem for developers because:

• Developers were directly confronted with this concept when using the API.

• One always had to remember to pass the list of profiles to the correct places.

• The combination of different profiles was hard to understand due to its flexibility.

• It inherently has the limitation that profiles are exclusively clustered in a single
dimension.

Some time after the camera project, we found context-oriented programming to be a
perfect fit. Instead of writing a list of profiles in every configuration access point, we
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write contextual specifications. The developers specify all dependences towards context
in one place. Instead of the error-prone combination of profiles, we would activate layers.
The environment would be modeled by layers as context-oriented programming proposes.
In this chapter we discuss this idea in detail.

4.1.3 Decisions

Table 4.1 gives a summary of various decisions in Elektra and shows which of them
were reverted in the current version.

Decision Earlier versions (< 0.8) Current version
(≥ 0.8)

data structure list custom
opaqueness partly fully
linear search yes no
metadata fixed number arbitrary
memory open&close ref-counted
hooks on access no via plugins
XML streaming built-in via plugins
process for API changes no yes
high-level API in core separated
focus in support of storages no focus configuration files
sorting manual always (at insert)
context-aware lookups no via plugins
configuration specification informally yes
object-oriented API yes yes
code-generated API no yes
context-oriented API no yes

Table 4.1: Decisions for an API. The version 0.8.0 was released on 5th May, 2012.

4.2 Execution Environment as Contextual Values

We suggest facilitating execution environments as contextual values. For example, let us
employ external configuration settings via getenv to query the execution environment.
We need to be careful: After dynamic reconfiguration the settings valid in the new context
differ from those obtained with getenv [235].

Next to external context changes, we face another problem: In some parts of the program
the context is more specific than in other parts of the program. For example, a Web
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browser has opened private and history-aware tabs at the same time. Although we want
to run the same source code for all tabs, the differences are important for the user. To
reduce the danger of applying wrong context information it is desirable to ensure that
access to execution environments always considers context [235].

Contextual values allow us to safely interact with an execution environment. They ensure
that the context is taken into account when accessing the execution environment [231].

We propose to specify the contextual values connected with the execution environment
as part of a separate unit. The separate unit is the configuration specification and
consists of external configuration files containing specifications for contextual values.
Such specifications facilitate context placeholders, each representing a dimension of the
context awareness of the contextual value [235].

Example 4.2. To greet in different languages, we would specify a contextual value:

1 [%language%/person/greeting]

2 type:=string

3 description:=hello in all languages

4 default:=Hi!

The basename of the key name (greeting) is the name of a contextual value of the
type string; and %language% is a context placeholder to be substituted in contextual
interpretations. GenElektra yields the contextual class Greeting using the contextual
value specification above [235]. N

For contextual interpretations, we substitute these context placeholders with values given
by layers. The resulting key name is used with ksLookup. In addition to the specification,
we have a configuration file containing the greetings in different languages:

1 german/person/greeting=Hallo!

In the example above, the contextual value provides two different values with % for an
empty layer.
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4.2.1 How to use Context Information?

To work with Elektra, developers need to specify the contextual values and layers.
Then developers can immediately facilitate the contextual values in their source code in
the same way as variables are used [235].

Example 4.3. We expand the Example 4.2 [235]:

1 [%language%/%country%/%dialect%/person/greeting]

2 type:=string

3 default:=hello

4 [%country%/person/visits]

5 type:=long

6 default:=0

We specify two contextual values: greeting and visits. They are implemented in code-
generated classes called Greeting and Visits. The class Person exists as placeholder
to avoid troubles if the contextual value person is specified later on. The class Person
has the two contextual values greeting and visits as member variables [235]. N

The default value will be used if the execution environment does not specify a value in
some context, for example, 0 in visits of Example 4.3. Otherwise, Elektra uses the
execution environment. The key database abstracting the execution environment can
contain a key-value pair for each value in each context [235]. We represent these key-value
pairs as configuration settings.

Example 4.4. Here we give some key-value pairs that can be used by the contextual
value greeting as defined in Example 4.3:

1 german/%/%/person/greeting=Guten Tag!

2 german/austria/%/person/greeting=Servus!

3 german/austria/traditional/person/greeting=Griass enk!

Such a configuration file is loaded at the beginning of the program and on change
notifications. Next, we have to specify layers as manually written layer classes like the
following one [235]:
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1 class CountryAustriaLayer : public Layer {

2 public:

3 string id () const { return "country"; }

4 string operator() () const { return "austria"; }

5 };

The method id returns a fixed string that gives the layer its name. To return the layer
value, we overload the function call operator. We introduce such layer classes because
the string can be computed and does not need to be constant. We assume similar layer
classes are implemented for the other countries, languages and dialects as well [235]. N

In a later extension we will elaborate on a technique without the need of such boilerplate
code and still avoid the error-prone strings we had in Chapter 3.

Example 4.5. The following function demonstrates the use of contextual values [235]:

1 void visit (Person & person)

2 {

3 person.context ().with<CountryAustriaLayer> ()

4 .with<LanguageGermanLayer> ()([&] {

5 cout << "visit " << ++person.visits

6 << " in " << person.context ()["country"]

7 << ": " << person.greeting << endl;

8 });

9 cout << person.greeting << endl;

10 }

The only parameter passed to the function visit is a reference (written with & in C++)
to the contextual value person. We realized the dynamic scope with C++ lambdas:
The expression [&] captures all variables by reference, such as person. The layer
activation happens at the next application of the context’s function call operator()
to the lambda expression. The block {} in lines 4–8 is executed in a different context
in which CountryAustriaLayer and LanguageGermanLayer are active. Context
activations facilitating the method with are limited within the dynamic scope of this
block [146]. In line 5 we increment person.visits. This effect is only visible in its
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context. Line 6 introspects the value of the layer name country. While in line 7 we
output a greeting in the specific context, in line 9 we output the greeting in the context the
program had before executing the block. An execution of the function visit produces
the following output [235]:

visit 1 in Austria: Servus!

Hi!

By looking at the source, we know which language and country is activated when produc-
ing the first line. For the dialect, however, we do not know the context from the function
alone, it is decided somewhere else in the program. The function has a side effect: The
value of visits is incremented by one in the context of Austria, German, and some
dialect but not in any other combination of activated contexts [235]. N

4.2.2 More on Layers

Each layer class implements the following interface [235]:

1 class Layer {

2 public:

3 virtual string id () const = 0;

4 virtual string operator() () const = 0;

5 };

The method id returns the name of the layer name, i. e., the context placeholder without %.
Developers must guarantee uniqueness of the return values from id: The method id of
every layer class must consistently return the same string, and the method id of every
different layer class must return a different string. During the context evaluation the
method operator() returns the layer value [235].

Simple implementations of layer classes, for example CountryAustriaLayer as defined
in Example 4.4, return a constant string. In other situations, we need to calculate the
layer values dynamically.

Example 4.6. The country is determined by invoking lookupCountry (utilizing the
current GPS position) whenever the layer is activated [235]:
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1 class CountryGPSLayer : public Layer

2 {

3 public:

4 CountryGPSLayer () : m_country (lookupCountry ()) {}

5 string id () const { return "country"; }

6 string operator() () const { return m_country; }

7 private:

8 string m_country;

9 };

N

The context itself often depends on contextual values. This is the case for profiles as
contextual values. Then a set of other contextual values depends on the profile.

Example 4.7. A profile of mobile devices is called “airplane mode” and switches context-
aware applications to be silent and to not try to start wireless transmission functions.
All settings deciding about silence and wireless transmission depend on this profile. N

Profiles are specified as contextual values but additionally represent a layer.

Example 4.8. We specify the profile to be defined by the execution environment [235]:

1 [%application%/profile]

2 type:=string

3 opt:=p

4 opt/long:=profile

5 default:=

A profile is easily combinable with contextual values to use completely different groups
of configuration settings. N

Instead of manually changing the complete configuration settings back and forth, we
have all configuration settings persistently stored and easily switch between them.

Example 4.9. Because of the properties opt and opt/long (see Section 3.2.5) this
contextual value is initialized from the command-line options -p and --profile with
a higher priority than initialization from the configuration file. Then we use a layer class
that returns the contextual value passed by the profile [235]:
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1 class ProfileLayer : public Layer

2 {

3 public:

4 ProfileLayer (Profile const & profile) :

5 m_profile (profile) {}

6 string id () const { return "profile"; }

7 string operator() () const { return m_profile; }

8 private:

9 Profile const & m_profile;

10 };

Such a profile usually is activated for the whole application. N

The implementation of the function main demonstrates how to set up the whole sys-
tem [235]:

1 int main (int argc, char** argv)

2 {

3 KeySet ks;

4 ksGetOpt (argc, argv, ks);

5 KDB kdb;

6 kdb.get (ks);

7 Context c;

8 Environment env (ks, c);

9 c.activate<MainApplicationLayer> ();

10 c.activate<ProfileLayer> (env.profile);

11 // the rest of the program

12 // for example, visit (env.person);

13 }

In lines 3 and 7 we instantiate a KeySet and the Context as provided by the Elektra
library. The key set is initialized with data specified in configuration files (automatically
found by Elektra), environment variables and command-line options (lines 4 and 6).
The function ksGetOpt is either generated, or the specification is read at run-time.
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Either way, we parse arguments as specified with opt and opt/long. GenElektra
yields (beside the classes corresponding to the names in the execution environment)
the class Environment, which provides access to the top-level contextual values like
person and profile. As we see in line 8, Environment depends on the key set and
the context. The use of the context’s member function template activate activates
two layers [235].

4.2.3 Implementation Choices

We evaluate four competing implementation choices for our frontend. Every technique
guarantees that whenever the contextual value is accessed it correctly delivers its value
under the interpretation of the current context. In the comparison we do not consider
the costs of layer switching but only accessing the contextual value. In all techniques,
needed updates in the event of context changes use the observer pattern as outlined in
Section 3.4.5 [235]. Then we answer the research question:
RQ 5.2. Which implementation technique for implementing context-aware frontends
has the best trade-off for time versus space?

We executed the benchmarks on a hp® EliteBook 8570w using the CPU Intel® Core™

i7-3740QM @ 2.70GHz. The operating system was GNU/Linux Debian Wheezy 7.5.
We used, unless mentioned otherwise, Debian’s GCC compiler 4.7.2-5 with the options
-std=c++11, -O2, and -Dopt=unlikely. We measured the time passed using get

timeofday. We executed each benchmark eleven times but discuss only the median
value (except in the boxplots, where all data are displayed) [235].

Our micro-benchmark facilitates an arithmetic calculation that frequently accesses con-
textual values [235]. We compare subsequent benchmarks with a function adding two
variables passed by reference:

1 Integer::type add_native (uint32_t const & i1,

2 uint32_t const & i2)

3 {

4 return i1+i2;

5 }

This function is called 100 billion times (iterations=100000000000LL) in a loop as
shown below [235]:
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1 for (long long i=0; i<iterations; ++i)

2 {

3 x ^= add_native (val, val);

4 }

The loop needs 27.16 seconds (see data labeled “native cmp noif” in figures 4.1 and 7.11).
Without the exclusive or (the ^ in line 3), for example, by adding up the results with
x += add_native, the loop takes 0.00 seconds (see “native noif sum” in Figure 4.1)
because the compiler replaces the loop by an arithmetical operation [235].
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Figure 4.1: Benchmark of implementation choices [235]. The figure shows a boxplot with
linear scale. Because of the large scale, the boxes are only (thick) lines. Figure 7.1 shows
the boxes of the three fastest variants. Black dots indicate measurements not within
1.5∗interquartile range [226]

For the next four microbenchmarks, we compare the performance on the contextual class
Integer instead of the native value of type uint32_t using the following code [235]:

1The second figure compares the three fastest variants.
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1 Integer::type add_contextual (Integer const & i1,

2 Integer const & i2)

3 {

4 return i1+i2;

5 }

To make above source code work, we overload the type conversation operator. The type
conversation operator in C++ allows contextual values to be used whenever a type
uint32_t is expected [235]:

1 operator uint32_t () const

2 {

3 /* Implementation of different access strategies

4 for contextual values*/

5 }

(Atomic) Branches

A naïve approach to update context changes is by checking a tidy flag on every access of
the contextual value [235]:

1 operator uint32_t () const

2 {

3 if (m_context_changed)

4 {

5 update ();

6 }

7 return m_cache;

8 }

This specific implementation requires two additional branches for each call of
add_contextual with devastating results: The loop then takes 271.62 seconds (it
is ten times slower, see “context if” in Figure 4.1). The run-time is improved to 190.13



4.2. EXECUTION ENVIRONMENT AS CONTEXTUAL VALUES 159

seconds (30 % faster, see “context if opt” in Figure 4.1) by giving the compiler hints
which if-branch is taken more often [235]. Such improvements, however, do not change
the overall outcome, the overhead is still high. Another major drawback of the solution
with branches is that the compiler cannot optimize away arithmetic loops [235]. The use
of branches for every access, however, yields benefits:

• It makes context changes lazy. Instead of looking up affected contextual value on
every context change, we would only mark them as tidy (m_context_changed
from above).

• When the contextual value facilitates std::atomic<bool> instead of bool for
m_context_changed, the contextual values are multi-thread safe. Unfortunately,
atomicity adds extra costs: The resulting run-time of 651.92 seconds is more than
doubled if we use an atomic type (see “context if opt atomic” in Figure 4.1).
With clang (version 3.5-1~exp1 using option -O3) the run-time is 81.42 seconds
both for std::atomic<bool> and volatile bool. Nevertheless, the results
are still far from desired [235].

Virtual Function Calls

The next implementation technique we discuss is switching objects at run-time. The only
change needed is to provide a base class and add the C++ virtual modifier [235]:

1 virtual operator uint32_t () const

2 {

3 return m_cache;

4 }

Virtual function calls are generally believed to outperform switch statements. Virtual
function tables, a possible implementation technique, received attention of the research
community, particularly for super-scalar processors [22, 48, 78]. But, virtual function
calls (where it is not known which class be called) make some optimizations (especially
inlining) impossible [78]. In our case, virtual function calls even perform poorer than
an if-branch, leaving us with a run-time of 298.8 seconds (see “context noif virtual” in
Figure 4.1). Optimizations that avoid the whole loop are impossible, too [235].
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Member Array

The next method is a member array containing values for every context. Context changes
are represented by modifying the array index m_index, again using the observer pattern.
On access of the contextual value, we return an element of the array [235]:

1 operator uint32_t () const

2 {

3 return g_arr[m_index];

4 }

Such member arrays yield promising results: 27.16 seconds (see “context noif cmp array”
in Figure 4.1 and later in 7.1). Additionally, optimizations can completely eliminate
arithmetic loops [235].

An array with elements for every combination of activated layers has a drawback: Done
in a naïve way it needs a large amount of memory for each contextual value because the
number of layer combinations easily gets huge. We left optimizations of this technique
as a future work [235].

Member Variable

The most efficient implementation is the use of one memory cell per contextual value
and returning its content directly [235]:

1 operator uint32_t () const

2 {

3 return m_cache;

4 }

With this technique we measured a median of 27.16 seconds (see “context cmp noif” in
figures 4.1 and 7.1). We got the same result as with the native variable access (“native cmp
noif”), which means that we did not measure any overhead. Furthermore, the technique
requires only minimal memory for caching (one native type per contextual value). Of
course, we must look up values on layer activation [235].
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Discussion

It is not surprising that such a simple variable access performs well. Nevertheless, we
cannot claim that the optimizations (we rely on) are done by every compiler for every
program. We answer our research question:
RQ 5.2. Which implementation technique for implementing context-aware frontends
has the best trade-off for time versus space?

Finding. Both member arrays and member variables have no overhead in our benchmark.
The use of member variables has minimal space requirements.

We decided to use the member variable implementation technique because it had no
run-time overhead in the benchmark on read-only access. Furthermore, the technique
has minimal memory overhead, fulfilling our requirement:
Requirement 10. Developers must have guarantees that read-only configuration access
is fast and updates only happen if wanted.

We will elaborate on this benchmark, and evaluate the costs of layer activations much
later in Section 7.1.2.

4.3 Multi-threaded Contextual Values

In this section we extend Elektra to ubiquitous computing. We found a combination
of three problems in this domain:

Context awareness aims to impress users by letting devices react in smart ways. De-
vices shall consider properties of their physical environment and information users
gave them. For example, if a smart phone is taken out of the pocket, the phone
does not measure body temperature anymore. In this situation, the phone turns
off vibration because the user would not feel it anyway [226].

Customizability aims to give end users the opportunity to modify unwanted default
values and context awareness, hence bringing the behavior in line with their needs.
For example, if users are deaf, turning off vibration is not a good solution [226].

Performance on multi-core processors bear new challenges and are accepted as an
upcoming trend for embedded computing. Multi-threading is an attractive tech-
nique to more thoroughly facilitate multi-core processor resources [226].
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In the previous section we mainly addressed context awareness and customizability. In
this section we extend LibElektra with support for multi-threading. We aim at context
activations across threads. For example, if context sensors detect that the battery is low,
we want to have a mechanism that notifies all threads of each running application [226].

4.3.1 Introduction of Embedded Use Case

We describe an embedded use case as often found in ubiquitous computing. Let us
consider a ubiquitous computing device that shall be protected via a watchdog:

1 [watchdog/%security%/enabled]

2 type:=boolean

3 default:=1

In the example above, we specify enabled as contextual value. We use boolean as its
type. GenElektra generates the source code implementing the contextual values. Gen-
Elektra reads the specification above and emits the classes Environment, Watchdog,
and Enabled [226].

A single contextual value has a countable, infinite number of values: one value for every
relevant context. These values are available in a key set. The unique key name required
to look up individual values is resolved by substitution of the context placeholders [226].

1 void printWatchdogStatus (Watchdog::Enabled const & e)

2 {

3 if (e) { cout << "Watchdog is enabled"; }

4 }

In Elektra, contextual values are only subject to be changed iff at least one of the
context placeholders in the specification coincides with the layer name [226]:
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1 void enableWatchdogInHighSecurity (Watchdog::Enabled & e)

2 {

3 bool originallyEnabled = e;

4 assert (e.getName () == "/watchdog/%/enabled");

5 e.context ().with<Security> ("high")([&]{

6 e = true; // security context "high" active here

7 assert (e.getName () == "/watchdog/high/enabled");

8 }); // end of security context "high"

9 assert (e == originallyEnabled);

10 assert (e.getName () == "/watchdog/%/enabled");

11 }

In line 3, we see a read-access of the contextual value e. In line 4, we assert that no
security context was set before, by checking that the context placeholder %security%
is replaced by a %, i. e., an empty layer. In line 5, we activate the layer Security with
the argument "high" for the layer construction. The lambda function (block after the
capture list [&]) is executed in the same thread but in another context. In line 9, the
contextual value e again has the value and context as before because we left the block
where Security was activated. The function has a side effect: The contextual value e
is modified in the security-context high. After calling this function and serializing the
configuration settings, we get the resulting configuration setting [226]:

1 watchdog/high/enabled=1

4.3.2 Synchronization Points

In its essence, our extension defines synchronization points for multi-thread-safe syn-
chronization of layers and contextual values. At these synchronization points global locks
ensure sequential activations and deactivations. We leave priority concerns to threading
facilities of the operating system [226]. We implement our extension as ContextPolicy
(see Section 3.4.2) called ThreadContext.

Because programs access contextual values frequently but change context less frequently,
Elektra avoids overhead while reading the value. We achieve this behavior by demand-
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ing the introduction of synchronization points by the developer. Code executed at the
synchronization points pushes new values to contextual values using the observer pattern.
We gain two advantages:

• Performance overhead occurs exclusively during synchronization points and assign-
ments. Reading contextual values still has the same overhead as accessing native
variables [235].

• Another advantage of synchronization points is that the user has full control over
resource consumption including battery drain that is important for most battery-
powered devices [231].

The first synchronization point we introduce is syncLayers. The thread of execution
uses syncLayers to have identical active layers to that it would have had if it had
executed every activate and deactivate of the program itself. After every thread
has called syncLayers, the whole process has the same active layers.

Example 4.10. Let us consider two threads with a ThreadContext c1 and c2, re-
spectively:

1 c1.activate<BatteryLow> ();

2
1
2c2.syncLayers ();

The Context’s method syncLayers updates the layers of the context c2 accounting
for the activate in c1, which happened before. After execution of c2.syncLayers,
the layers in c2 are at par to the context of the other thread c1. N

The need of placing synchronization points seems to be cumbersome when programming.
In practice, however, these places are usually evident—when users start new interactions.
With a use-case-based approach to software engineering developers systematically find
all such places. For optimization purposes, users can avoid synchronization points at less
important places. Global optimizations are possible, too. For example, we can ignore
synchronization points if we visited one a short time ago. In some architectures we
completely remove synchronization points from the main concerns. For example, in
architectures with short interactions and notifications on context changes [231]. In some
situations this explicit definition of checkpoints yields an advantage. For example, if an
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algorithm assumes variables to be constant. Then the developer has a way to specify
where updates are done safely [226].

Example 4.11. Consider an algorithm that must terminate sooner if the battery is low.
Because of the reduction of computation, the device would consume less power. As a first
step, we specify a contextual value that defines the accuracy for this algorithm [226]:

1 [algorithm/%batterylow%/accuracy]

2 type:=long

3 default:=100

As second step, we add a synchronization point before the algorithm. Afterwards, the
algorithm calculates its task without any overhead [226]:

1 void userInteraction (Algorithm::Accuracy const & accuracy)

2 {

3 accuracy.context ().syncLayers (); // sync accuracy

4 for (long i=0; i<accuracy; ++i)

5 {

6 // calculate Task with given accuracy

7 // contextual value is not changed within loop

8 }

9 }

The method context returns the ThreadContext associated with the contextual
value accuracy. Then we define a synchronization point using its method syncLayers.
Every time a synchronization point is passed, all layer changes in other threads are taken
into account [226]. The developer is certain that accuracy is not changed during the
loop starting on line 4 at unwanted places [231]. N

4.3.3 Global Activation

We extend our frontend so that activate and deactivate work across threads [226].
Let us specify a contextual value that provides a security level based on the tampering
of the device:
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1 [security/%tampered%/level]

2 type:=long

3 default:=high

Then we share the contextual value in a multi-threaded program with two threads. The
local variables c1 and c2 represent the context in the respective left and right thread.
They keep track of the currently active layers of their own threads:

1 c1.deactivate<Tampered> ();

2
3 // Security unchanged

4 // (missed update)

1Security.Level sl (ks, c2);

2
3c2.activate<Security> (sl);

4// Tampered now deactivated

After synchronization points, contexts integrate layer switches that occurred in other
threads. Every activate and deactivate works as synchronization point. On the
left thread in line 1, we deactivate the layer Tampered. The change happens immediately
in the left thread but needs till line 3 of the right thread because no synchronization point
occurs earlier. The activation in line 3 pulls the deactivated layer to the context c2. Thus
the contextual value sl (security level) is affected by the layer change of Tampered.
Elektra guarantees that sl gets aware of its new context before the Security layer
gets activated. At the end of the left side’s thread, the layer Tampered is deactivated
and Security has the value it had in c1 from the beginning. At the end of the right
side’s thread, Tampered is deactivated and Security is activated. All contextual values
connected with c2, including sl, are updated at that point.

We implicitly synchronize all layers with any activation to be sure that the activation is not
using out-dated information. The synchronization of layers before layer (de)activations
itself is a preferable property: This way we guarantee that every context in every thread
consists of the same activated layers with the same layer values. This is essential if we
activate a layer that internally uses contextual values. Without layer synchronization
done first, the contextual values used during activations would have wrong values. We
want to avoid that because of our requirement:
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Requirement 6. Configuration libraries must provide ways to keep transient and per-
sistent views consistent.

4.3.4 Coordination

ThreadContext Coordinator

Environment KeySet1

1

1

Figure 4.2: Coordination between threads, showing the major components involved. The
dotted boxes are to be shared between threads. Arrows express a composition [226].

In Figure 4.2 we display the major parts necessary for coordination between contextual
values. The key set is used as the set of all values in every context as needed for lookup and
serialization. The class Environment is the generated class hierarchy’s root. Objects of
ThreadContext encapsulate all layers active in one thread. As the name suggests, every
thread uses its own ThreadContext. Finally, the Coordinator guards coordination
between ThreadContext. The boxes, which are drawn with the dotted dash style, are
only instantiated once per process and are shared between all threads [226].

We do not need any locks or atomic values in KeySet, ThreadContext nor the
Environment (the contextual values). Instead we delegate all coordination work to
objects of the class Coordinator. Both ThreadContext and Coordinator employ
the observer pattern internally. By the use of callbacks, we completely decouple the
coordination and the key sets [226].

Applications do not have restrictions of how many objects of the class Coordinator
or KeySet are used. They can be used within plugins or otherwise nested applications.
Nevertheless, Elektra imposes the following constraints: Every Coordinator is bound
to exactly one KeySet, every ThreadContext is liable to exactly one Coordinator,
and again every contextual value is accountable for exactly one ThreadContext [226].

Assignment

Suppose value is specified to be a contextual value of type long integer [226]:
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1 [value]

2 type:=long

3 default:=0

Then we assign and use the contextual value as an integer in source code [226]:

1 value = 8;

2 assert (value == 8);

Different from reading contextual values, the assignment of contextual values has addi-
tional overhead. For every change of the value, next to the cache, the underlying key
set needs to be updated in a thread-safe way. The design decision is because of the
assumption that customization (assignment) occurs less often than accessing values and
changing layers. The decision leads to desired properties:

1. Freshly created contextual values have an up-to-date value with respect to assign-
ments, even across threads [226]:

1 value = 5;

2
3
4

1
2ThreadContext tc (c);

3Value value (ks, tc);

4assert (value == 5);

2. The data structure key set is kept up to date and its serialization always contains
the latest assignments [226].

Thread-based Layers

Layers, that compare the current thread identification with a selected thread identification,
are a powerful technique. When these layers are activated globally, they selectively
influence threads [226].
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Example 4.12. We want to activate a layer only within a single thread specified with
the thread identification m_selected. Implementing this layer is straightforward [226]:

1 class Thread : public Layer

2 {

3 public:

4 Thread (pthread_t selected) :

5 m_selected (selected) {}

6 string id () const { return "thread"; }

7 string operator() () const {

8 if (pthread_self () == m_selected) return "active";

9 return "";

10 };

11 private:

12 pthread_t m_selected;

13 };

At line 8, we have to check if the current thread identification is identical to the thread
identification of a selected thread. The method pthread_self tells us the thread
identification of the calling thread. If the current thread is the selected thread, we return
that the layer is "active". Otherwise, we return an empty string to tell that the layer
is deactivated [226]. N

The same technique is applied to change the context for a pool of threads. Instead
remembering a single selected thread, we remember a set of relevant threads [226].

4.3.5 Result and Use

Here we answer the research question:

RQ 5.3. How can we improve on the usability of context-aware frontends if being used
concurrently from several threads?
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Finding. We improve contextual values by defining synchronization points that allow
thread-safe use of contextual values and layer activations across selected threads.

We described an extension in which we use the policy implementation ThreadContext
instead of Context (from the previous Section 4.2). For multi-threaded applications, we
have to set ContextPolicyIs [226] (see Section 3.4.2 for details of ContextPolicy).

A function main that uses multi-threaded Elektra can be written as follows [226]:

1 int main (int argc, char ** argv)

2 {

3 KeySet ks;

4 ksGetOpt (argc, argv, ks);

5 KDB kdb;

6 kdb.get (ks);

7 Coordinator c;

8 ThreadContext tc (c);

9 Environment<ContextPolicyIs<ThreadContext>> env (ks,tc);

10 // the rest of the program using env

11 }

The ContextPolicyIs in line 9 changes the policy class for all contextual values for
this instantiation of the Environment.

4.4 Persistent Contextual Values as Inter-process Layers

While the manually written layers provide some opportunities as shown in Section 4.3.4,
in nearly all cases the layers are boilerplate code pursuing the same goals:

1. Making activation of layers context aware: Here we need to take a contextual value
as parameter for the layer.

2. Allowing persistence of layers: Doing so, we share layers across applications.

In this section we describe the novel idea to use contextual values for layer activation,
avoiding manual implementation of layers. We aim at combining layer activations with
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contextual values fulfilling the goals above. We suggest to use contextual values as param-
eters to activate and with. Because contextual values are context aware, by definition,
they always consider their context. By persisting contextual values we enable synchro-
nization of layer activations between applications. We keep our previous performance
properties: Reading contextual values is as fast as reading native variables [231].
Example 4.13. Let us consider internationalized software. As a prerequisite, we need
a specification shared between applications:

1 [language]

2 type:=string

3 default:=english

4 [person/%language%/greeting]

5 type:=string

6 default:=hello

Using this specification a code generator yields the classes Person, Greeting, and
Language. The classes ensure contextual value semantics.

Contextual values help us, for example, to easily display translated messages. Using the
concepts as introduced before, it is difficult to ensure that every application has activated
the same language. We would need to activate the correct layer in every application
individually. There was no straightforward way for one application to tell all other
applications that the language has changed. We propose to activate such layers with
code-generated contextual classes (such as Language) [231]:

1 void greet (Person const & p, Language const & language)

2 {

3 p.activate (language);

4 cout << p.greeting << endl;

5 }

In line 3 we activate the contextual value language. The execution environment initial-
izes contextual values at application startup, providing sensible default values changeable
by settings for different contexts. The build-in persistence of key sets allows us to activate
the same layer across applications [231]. N
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The rest of the section is structured as follows:

Section 4.4.1: We describe the semantics of inter-process layers.

Section 4.4.2: An intra-process notification system is allowing us to update the context
of contextual values when other contextual values, representing layers, change.

Section 4.4.3: An inter-process notification system is telling us when to reparse configu-
ration files.

4.4.1 Inter-process Layers

Because we use contextual values as layers, all properties of context specifications are
reused. The only missing information to enable activation of contextual values is the
layer name. To make specifications more compact, we decided that by default the layer
name is the basename of the contextual key names. This convention yields appropriate
layer names for most contextual values [231].
Example 4.14. Let us define a contextual value to be used as layer:

1 [%language%/country]

2 default:=

The contextual value country has the layer name country. N

Layer names, unlike contextual values, do not form a hierarchy. In some situations the
basename does not present the right choice. In such situations we use the property value
of layer/name to select a layer name.
Example 4.15. Let us facilitate a country code to identify countries [231]:

1 [country/%language%/code]

2 type:=string

3 layer/name:=country

4 default:=C

Because the layer name code (derived from the basename) would be too generic, we
use property layer/name to rename it. Then activating the contextual value env.

country.code activates the layer country [231]. N
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We have a complete context specification as necessary for contextual values and layers,
fulfilling the requirement:

Requirement 3. A single configuration specification must be able to include all infor-
mation to generate all artifacts needed for configuration settings.

Context-aware Activation

With this extension, developers do not have to consider context when activating layers.
Context-aware activations correctly consider up-to-date contextual values.

Example 4.16. Let us define some contextual values [231]:

1 [location]

2 type:=string

3 description:=GPS position in ??N??W

4 default:=

5 [%location%/country]

6 type:=string

7 default:=

8 [person/%country%/greeting]

9 type:=string

10 default:=Hello

To activate the layer country and location we use [231]:

1 void greet (Person & p, Country & country, Location & location)

2 {

3 p.context ().activate (location);

4 p.context ().activate (country);

5 cout << p.greeting << endl;

6 }

If location and country would be layers without contextual values as described in
earlier sections, exactly these layers would be activated without influencing each other.
This means that activate in line 4 would not take the location changed in line 3
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into account. But since location and country are contextual values (implemented
by the contextual classes Location and Country), they factor in context and the
activations correctly influence each other. In the example above, after the activation
of the contextual value location, the position of the contextual value country is
updated. Line 4 updates the contextual value country as needed by the established
context [231]. Given the configuration settings:

1 location=48N16O

2 48N16O/country=austria

3 person/austria/greeting=Griaz enk!

The output of the program is:

1 Griaz enk! N

Activation via Assignment

A not-so-obvious property of activating contextual values is that, after activation, devel-
opers control (de)activation via changing the values of contextual values [231].

Example 4.17. We deactivate the layer location by an assignment:

1 void emptyGreet (Person & p, Location & location)

2 {

3 location = "";

4 p.activate (location);

5 cout << p.greeting << endl;

6 }

After line 3, the contextual value location has an empty string in its current context.
In line 4 we activate the layer location. Despite the activation, because of the empty
value, the context placeholder location is replaced with %, i. e., it is deactivated. The
greeting in line 5 is according to a deactivated layer location. N
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Example 4.18. No layer switch occurs after we have done a deactivation of a contextual
value:

1 void assignLanguage (Language & language)

2 {

3 language.context ().activate (language);

4 language = "";

5 // layer language deactivated

6 language = "spanish";

7 // layer switch to spanish

8 language.context ().deactivate (language);

9 language = "english";

10 // layer still deactivated

11 }

As precondition, to make contextual values act as a layer, we activate the contextual
value (line 3). Layers with an empty value (line 4) impact contextual values in the same
way as otherwise deactivated layers: Placeholders are replaced with %. Only after explicit
deactivation in line 8, assignments of the contextual value language do not interfere
with other contextual values anymore [231]. N

In summary we have two different ways to deactivate layers:

1. We call deactivate with the contextual value as parameter.

2. We activate a contextual value that contains an empty string or assign an empty
value to an already activated contextual value.

The different deactivations have an important difference: A layer with an empty value
can be activated by assigning a different string, which is not possible after calling
deactivate.

4.4.2 Intra-process Notification

In previous sections we assumed that changes of a contextual value only happen by
an assignment to a contextual value. In this extension we do not need this assumption
anymore. We introduce a reloading mechanism for updates of the underlying key set [231].
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For such in-memory synchronizations we provide the method sync [231]. Invoking sync
updates all contextual values with the values the key set currently has and makes sure
that correct layers are active afterwards.

Example 4.19. To fetch the latest configuration settings from the hard disk and update
all contextual values according to the new configuration settings, we use:

1 void doSync (Context & c, KDB & kdb, KeySet & ks)

2 {

3 kdb.get (ks);

4 c.sync ();

5 // contextual values are updated;

6 // and layers are activated accordingly

7 }

In line 3 we update the KeySet ks, which is connected with the contextual values. In
line 4 we execute the in-memory update to reload the contextual values [231]. N

The behavior of the synchronization via sync does not differ from performing activate
or deactivate via assignment. Developers can think of sync as assigning all changed
contextual values in the correct order [231].

Activation Order

For correct behavior of sync we need to consider the dependences between contextual
values. Contextual values with context placeholders (%...%) depend on contextual values
with a basename identical to the context placeholder’s name. We use a topological sort
based on Kahn to order according to the dependences [144, 231].

As long as layers and contextual values were completely separate concepts, we cannot
build dependence cycles: It was not possible that layers depend on contextual values.
Activation of contextual values, however, introduces the possibility of cyclic dependences.

Example 4.20. We need at least two contextual values to build a cycle [231]:
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1 [%country%/language]

2 type:=string

3 default:=

4 [%language%/country]

5 type:=string

6 default:=

Then we need to craft configuration settings to make use of the cycle:

1 swiss/language=de

2 luxembourg/language=fr

3 fr/country=swiss

4 de/country=luxembourg

If the application activates the layer country, Elektra would need the value of the
language layer and vice versa. Activation of layers within such cycles lead to tog-
gling values [231].

Luckily such cycles only stem from design errors and are unwanted. Thus we prohibit
such cycles already in the context specification. These situations shall be detected early
by checking the specification [231], following the requirement:

Requirement 5. The specification must enable code generation and inconsistencies
must be ruled out during compilation.

4.4.3 Inter-process Notification

Because of diverse requirements in different applications and systems, we took care that
Elektra exhibits modular design principles [225, 230]. We decided to give applications
different inter-process notification methods to choose from [231], complying with the
Requirement 2:

Requirement 2. A configuration library must be able to integrate (legacy) systems and
must fully support (legacy) configuration files.

Whenever processes use kdb.set to modify the underlying configuration files the noti-
fication mechanisms fire. Every interested process listens to the notifications and then
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fetches the updated configuration settings using kdb.get. Once every thread has passed
a synchronization point, the application is fully up to date [231], fulfilling the requirement:

Requirement 6. Configuration libraries must provide ways to keep transient and per-
sistent views consistent.

As shown in Example 4.19, kdb.get updates the contextual values. On conflicts Elek-
tra supports a three-way merge [231]. A three-way merge implies that we consider the
common ancestor next to our internal (the application’s) and the external (the system’s)
configuration settings. Using a three-way merge, we avoid errors in situations where
configuration settings are clearly changed by one party (either internal or external). If
both sides change the same configuration value conflictingly, the three-way merge cannot
help and we usually need to propagate the decision to the user.

With inter-process notification in place, we answer the research question:

RQ 5.4. How can we share context between applications?

Finding. We found that most of the time, contextual values have the necessary informa-
tion to be used as replacement to manual implementation of layers. As main benefit, we
always get context-aware layer activation. Using persistence and inter-process notification,
we share layer information between applications.



CHAPTER 5
Backends

You are responsible for the predictable consequences of your actions.

— Noam Chomsky

System administrators are rarely confronted with the developer’s frontends. They are
concerned about making applications in the system work together as a whole. In this
section we deal with modular and programmable backends. We explore extensions of
SpecElektra for these needs, answering the research question:
RQ 6. Which concepts are needed for context-aware backends to fulfill the requirements
as unveiled in Chapter 2?

Only a hand-full factors determine how well an application is integrated into its system,
for example: logging, available external interfaces, look&feel of the user interface, and
user interaction (such as shortcuts and menus). In modern applications these aspects are
configurable. We attempt to exploit already present configuration access points to make
the system feel as if it was made from one piece [227].

Currently, such an endeavor requires a user to configure each application manually. We
have an instance of the configuration integration problem as described in Section 0.1.4.
In this chapter, we mitigate the configuration integration problem by introducing a
system-wide, programmable key database. The key database can be accessed by any of
the frontends described earlier.

In Section 5.1, we describe how abstractions help in solving the configuration integration
problem. We describe the history of earlier failed attempts to create a universal backend
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and show how modularization of backends helped to overcome the challenges. Then we
elaborate on the current state of how to integrate already existing configuration files into
the system-wide key database using backends.

In Section 5.2, we elaborate on context-aware lookups in the key database. We describe
how layers are integrated in the backend. We assume that applications use one of the
frontends discussed in the previous chapter.

In Section 5.3, we get rid of the assumption that application’s source code needs to be
modified and integrate already existing frontends. We show how the key database helps
us to integrate applications without compromising modularity. We demonstrate improved
modularity in the areas of suitable configuration settings and configuration validation.

In Section 5.4, we elaborate on how to adapt widely used frontends. We present a
solution of how to improve context awareness of applications without any modifications
in the source code.

5.1 Configuration Abstractions

In this section we describe different levels of configuration abstractions, exploring the
research question:

RQ 6.1. What is the design space for abstractions of context-aware configuration in
backends?

5.1.1 History

As in the frontend, also in the backend the most problematic part was too weak or
wrong abstraction. In particular, passing out internals about the backends caused many
hard-to-fix problems.

In the first versions of Elektra, every key had a direct relation to a file in the file system.
The metadata of the key was the metadata of the file, for example, access permissions.
Soon we realized that this abstraction is poor. Limitations of file systems directly affected
Elektra. For example, every persisted key in its own file needed the block size of the
underlying file system. At that time, the block size usually was 4 kilobytes, but many
configuration values only have the size of a few bytes.

Out of necessity, we enabled system administrators to choose between different backends.
We implemented a Berkeley DB backend to avoid the mentioned waste of resources. In
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these backends, the leaky abstractions were troublesome: The metadata and the direct
relation to files was not useful anymore.

Even more problematic was the semantics to get or set individual keys. It was time-
consuming to implement backends, which serialized configuration settings to configura-
tion files: It was a complicated endeavor to modify a single Key in the middle of the
configuration file efficiently. We have to check if a different process modified the file
(conflict-detection), parse the file, do the necessary modifications, and write the changes
back. This implementation has to be repeated for every configuration file parser.

For Elektra 0.7, released on 17th October, 2008, we thought of the following solution: We
wanted to use capabilities to describe what a backend is able to do. If a backend cannot
change individual keys within the file, its capabilities would say so. The capabilities
were a way to describe that backends were incompatible to some file system semantics.
Unfortunately every backend, except for file system backends, was incompatible in some
way. The capability descriptions were long and complicated.

From the user’s point of view, most of the backends were not an option: If a single
application needed a specific capability, the user is already tied to the specific backend.
To defuse the situation, we introduced a way to mount several backends into the system-
wide key database. Hence, if an application had specific requirements for the backend,
we mount this particular backend.

In Elektra 0.8 released on 5th May, 2012, we implemented a full abstraction in that
frontends are no longer able to distinguish between different kinds of backends. Backends
only differ in:

• Their quality characteristics, such as their performance.

• The kind of configuration settings they accept and reject.

• Characteristics important for system administrators and legacy systems, such as
the configuration file format.

This history resembles that of file systems. Our solution is similar to what modern virtual
file systems provide. The main difference to file systems is that Elektra:

• builds upon key-value pairs and not files, and

• provides configuration abstractions such as default values and transformation.
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5.1.2 Key Database

Here we have a top-down discussion of the configuration abstraction included in the key
database. The key database stores all configuration settings in configuration files. This
way, the operating system takes care of security via file system permissions [232].

The bootstrapping (see Section 3.2.2) is important to fulfill Requirement 1:

Requirement 1. A configuration library must be simple to use, easily available, light-
weight, efficient, and have an excellent out-of-the-box experience.

It is a prerequisite to have a global view to enable sharing of configuration settings:

Requirement 4. A configuration library must allow us to share configuration settings.

Plugins

The backends delegate their complete work to plugins. We recently added many plugins
to support even more functionality for configuration access. The figure on page 183 shows
the current state of plugins with dependences. For some functionality, we are already
aware of a saturation: Only small details are missing. For other functionality, such as
supporting more configuration file formats and validation specifications, we currently do
not see any limitation for the number of plugins that would be useful.

Implementing too many features in one plugin is problematic. Many aspects would clutter
the source code, making the plugins difficult to maintain. To alleviate this problem,
several plugins together build up a backend. Each plugin implements a single concrete
requirement, as standard in many architectures [50, 185]. Hence, we ended up with the
large number of 78 plugins as shown in full-page figure on the next page. Arrows indicate
plugins that provide some abstract functionality. Square boxes are providers. Names in
ellipses are concrete plugins not used as provider names. We did not include plugins
without arrows.

The architecture allows plugins to have external dependences without adding the de-
pendence to Elektra’s core. Not every plugin has the burden to be portable, instead
highly-optimized plugins are useful alternatives to generic plugins. With this separation,
each plugin and the core of Elektra stays minimal.
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Storage Plugins

Configuration file formats have countless variations in their syntax. The repository of
Augeas [177] (that covers a small part of GNU/Linux configuration files) already contains
lenses for 181 configuration file formats. Plugins concerned with parsing and serializ-
ing configuration files are called storage plugins. Metadata enables reconstruction of
configuration-file-format-specific syntax and information, such as comments.

To better cope with the vast number of existing configuration file formats, Elektra
benefits from techniques to rapidly implement many formats. Elektra currently sup-
ports more than 190 different configuration file formats, not counting the number of
combinations the plugin configurations would allow. It has support for popular formats
such as XML, JSON, INI, and CSV, but also many other file formats typically found in
/etc, supporting Requirement 2:
Requirement 2. A configuration library must be able to integrate (legacy) systems and
must fully support (legacy) configuration files.

Resolver Plugin

Different operating systems and distributions have different locations for configuration
files. Elektra’s configuration abstractions set aside these differences. During the instal-
lation of applications, Elektra remembers the choice of the respective operating system
and distribution in the key database. Some differences are not static but depend on
calls to the operating system, for example, to locate the user’s home directory. Elektra
handles these situations at run-time using resolver plugins. Whenever Elektra needs
the name of a configuration file, the plugins resolve the path name from the static and
dynamic information sources [227].

The plugin resolver is also responsible for all other non-portable tasks related to
configuration access. These tasks include overwriting the configuration file atomically,
detecting conflicts, and checking for updates. The plugin resolver provides the fol-
lowing guarantees1:

• Configuration files are only parsed by kdb.get again if they were modified.

• If any plugin fails during kdb.set (except of logging plugins that are executed
after committing the changes), no backend will persist any changes.

1 The guarantees depend on guarantees file systems offer. For example, if an uncooperative external
write operation happens within one time unit of the file system, conflicts cannot be detected.
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• If an external application modifies a configuration file, a subsequent kdb.set
operation fails and a conflict will be reported.

The idea of extracting all the operating system-dependent parts from the storage plugins
has advantages: An important benefit is that adding support for a new operating system is
reduced to implementing a resolver plugin. Moreover, it enables the support for completely
different ways to retrieve configuration files. For example, we implemented resolvers that
directly work with Git repositories or fetch files from URLs.

5.2 Context-aware Lookup

In this section we elaborate on design, requirements, and the use of context-aware lookup.
The context-aware lookup includes the layer-based lookup and the cascading lookup.
We start with the cascading lookup, which supports namespaces (Section 5.2.1) and
links (Section 5.2.2). Then we continue with the layer-based lookup in Section 5.2.3.
In Section 5.2.4, we discuss the goals of such specifications to mitigate run-time errors.
Overall, we answer the question:

RQ 6.2. How can we enable context awareness in backends without support from fron-
tends?

5.2.1 Namespaces

One dimension of configuration settings in the cascading lookup is their namespace. We
already mentioned that configuration settings and specifications are separated. Name-
spaces provide the way to separate keys of different locations, purpose, and importance
from each other.

Applications aim to have no hard-coded namespace in their source code. This way
applications are abstracted over the concrete configuration source. With namespaces, we
are able to uniquely identify different sources of configuration settings [227]. Only system
administrator tools directly work with namespaces because they need full control. For
introspection system administrators prefer context-aware lookup as they are interested
to see configuration settings exactly as applications see them. Elektra supports the
following namespaces with the given prioritization as default [227]:

spec for configuration files containing configuration specifications, stored in some system
location such as /usr/share.
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proc for process-specific configuration settings, for example, command-line options and
environment variables, fulfilling the requirement:
Requirement 11. A configuration library must support all three popular ways for
configuration access: configuration files, command-line options, and environment
variables.

dir for configuration files in a special directory, for example, .htaccess of the Apache
Web server or .git in the current working directory.

user for configuration files in the user’s home directory.

system for configuration files located at positions of system-wide relevance, for example,
below /etc.

(default) (as given from the property default) for default values that are directly
derived from the configuration specification.

Our justification for this fixed prioritization is: Most applications already use this order,
therefore system administrators expect it. Nevertheless, in some situations exceptions
are needed. Links and the property namespace define such exceptions.

5.2.2 Links

We designed the configuration specification to be extensible and independent of a concrete
programming language.

Example 5.1. Consider shortcuts of applications: Nearly every graphical user interface
has a shortcut for quitting the application. The default is often Ctrl+Q. Nearly every
application provides a way to change the default. But we miss a way to change the
shortcut for all applications [227]. Using Elektra we specify how we share shortcuts
between editors by [227]:

1 [our_editor/quit]

2 fallback/#0:=/editorconfig/shortcut/quit

3 fallback/#1:=/kde/kate/ActionProp/Def/file_quit

4 fallback/#2:=/vim/map/:qa<CR>

5 fallback/#3:=/emacs/keyboard-escape-quit
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The property fallback establishes a link to other configuration setting. The links are
used if the key (here our_editor/quit) is not found. N

Using such simple specifications, we establish a single configuration setting to change
shortcuts of all applications. The novelty is that these links are globally available and
introspectable [227], complying with the requirement:

Requirement 7. Configuration settings and specifications must be introspectable.

This functionality is implemented in ksLookup because only then we are always consis-
tent with the latest changes of the in-memory key set. Plugins can extend the lookup
functionality. For example, with the help of plugins default values are derived from
other values [227]. Using such links and transformations, we enable applications to use
configuration settings of other applications, fulfilling Requirement 13:

Requirement 13. A configuration library must mitigate the configuration integration
problem.

Example

Suppose we have no configuration settings but only the following specification:

1 [our_editor/quit][morekeywords={namespace,fallback}]

2 namespace/#0:=system

3 fallback/#0:=/vim/quit

4 default:=Ctrl+Q

5
6 [vim/quit]

7 namespace/#0:=user

8 default:=:q

Then a ksLookup invocation, with the key name /our_editor/quit, conducts the
following steps:

1. it looks up the key spec:/our_editor/quit successfully,

2. it skips the layer-based lookup (because no property context is present),

3. it calls lookupBySpec with the key from the step before,
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4. it skips override (because no property override is present),

5. it fails in searching for the key in the namespace system (because no configuration
file is present), and

6. because of the property fallback it recursively continues with the steps:

a) it looks up the key /vim/quit in namespace spec successfully,

b) it skips the layer-based lookup,

c) it calls lookupBySpec with this key,

d) it skips properties context and override for /vim/quit, and

e) it fails in searching for the key /vim/quit in the namespace user, and

7. it uses the default value Ctrl+Q (but not the default value :q, because we only
consider top-level default values).

5.2.3 Layer-based Lookup

Here we discuss the generalization of namespaces, called layer-based lookup, that avoids
some limitations of the cascading lookup:

• Instead of fixed namespaces, arbitrary layer names are used.

• Instead of having a single dimension (one namespace per key), an arbitrary number
of context placeholders are used to look up a single key.

Layer-based lookups implement contextual values [275]. The layer-based lookup shall
return the correct variables with respect to the currently active layers. As running
example, we use vibration of mobile phones. Let us start by considering if a mobile phone
is in the pocket:

1 [phone/call/vibration]

2 type:=boolean

3 context:=/phone/call/%inpocket%/vibration

In this example, vibration is a contextual value. Because the specification is config-
urable, users naturally have a chance to modify the behavior regarding their needs. To
turn on vibrations for phones in a pocket, we would use [232]:
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1 phone/call/inpocket/vibration=on

2 phone/call/notinpocket/vibration=off

Context Sensors

To make the layers work within any frontend, we use out-of-process layer activation
and deactivation by facilitating the key database. We call processes actively changing
the key database to update layer values context sensors. A context sensor changes
configuration settings named as /env/layer/<layer name> to reflect the current
situation of layers. This change in the key database influences all processes across the
whole system and can change contextual values [232]. We identified three different kinds
of context sensors:

Information within the key database: In some cases the wanted information is already
present in some other parts of the key database. Plugins read context information and
integrate this information into the key database. In such situations, we create a link from
/env/layer to the already-present key [232]. For example, we mount the plugin uname
to /env/uname and create a link from /env/layer/nodename to /env/uname/

nodename. Then the layer value of nodename contains the nodename.

Hooks: Some systems provide hooks to be executed on context changes. For example,
if new software is installed or the network connection changes, often custom hooks are
provided. In these custom hooks, we update /env/layer according to the state change.

Context sensor daemon: In the other cases, we facilitate daemons (active processes).
They observe changes of the system, accumulate and interpret the data, and finally write
the condensed layer information into /env/layer. Doing so, they implement value
transformations, hysteresis, and even feedback control systems [232]. For example, an
active process combines different temperature and proximity sensors. When a context
sensor detects that the device is outside the pocket, it changes /env/layer/inpocket
to notinpocket. Then the layer name inpocket of the contextual value vibration
is changed accordingly.
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Example

We want to complete the example inpocket to demonstrate recursion and several layers.
Think of a mobile phone lying on a table during a meeting inside a building, i. e. [232]:

1 env/layer/inpocket=notinpocket

2 env/layer/inmeeting=inmeeting

3 env/layer/inbuilding=inbuilding

Context sensors continuously update these values but we assume them to be static during
a lookup. Similar to the layer inpocket, the layer inbuilding’s value can be derived
from physical sensor values. Such context is usually derived from GPS or in-door location
services [198]. The layer value inmeeting, however, cannot be derived from physical
sensors. Instead the context sensor needs to query the person’s schedule to get to the
relevant data. Such context sensors’s data sources are called virtual sensors [24].

Suppose the application on the mobile phone executes the following non-context-aware
source code [232]. We show the source code someone who avoids type-safe frontends
would use:

1 Key * vibration = ksLookup (ks, Key ("/phone/call/vibration"));

2 if (!strcmp (keyString (vibration), "1"))

3 {

4 /* commence vibration */

5 }

Then we need a context specification [232]:

1 [phone/call/vibration]

2 type:=boolean

3 context:=/phone/call/%inbuilding%/vibration

4 [phone/call/inbuilding/vibration]

5 type:=boolean

6 context:=/phone/call/%inpocket%/%inmeeting%/vibration
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And we need configuration settings [232]:

1 phone/call/inpocket/inmeeting/vibration=on

2 phone/call/notinpocket/inmeeting/vibration=off

3 phone/call/notinpocket/notinmeeting/vibration=on

4 phone/call/inpocket/notinmeeting/vibration=on

5 phone/call/notinbuilding/vibration=on

When the mobile phone gets a call, ksLookup performs the following steps [232]:

1. It starts to look up /phone/call/vibration and finds the property context
in the context specification.

2. It finds the property value /phone/call/%inbuilding%/vibration, and re-
places %inbuilding% with inbuilding.

3. In the next recursion step, it looks up /phone/call/inbuilding/vibration,
in which we find the context specification /phone/call/%inpocket%/

%inmeeting%/vibration.

4. It replaces the two layer names inpocket and inmeeting with the layer values
notinpocket and inmeeting, respectively.

5. In the last recursion step, it looks up /phone/call/notinpocket/

inmeeting/vibration.

6. It does not find a context specification for /phone/call/notinpocket/

inmeeting/vibration. Hence, the layer-based lookup returns the configura-
tion setting for this key name that has the configuration value off.

7. As a result, the phone does not vibrate.

Discussion

Compared with activating layers in the frontend, the solution implemented in the backend
has different qualities:

1. We avoid hard-coded context specifications within the key names that are only
working with support from frontends.
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2. We are more flexible in changing context specifications, and avoid recompilations.

3. We enable other applications to access the context specifications.

4. We do not have ways to express dynamic scoping within the program. Context
sensors only have the equivalence of an activate construct. We have to dispense
the power of the with construct.

Finding. Context awareness, implemented in a backend, allows us to share context in
the form of layers across applications. Compared to a solution in context-aware frontends,
we lose dynamic scopes, but we gain links and recursion.

5.2.4 Configuration Specification Checking

One of the essentials of configuration specification languages is their capabilities to
thoroughly validate configuration settings. They have the benefit that inconsistencies
within the configuration settings and specifications can be found. We have two different
kinds of type checking, taking place at different stages:

1. While accessing configuration specifications, we can type check if the configuration
specification SpecElektra uses its types consistently.

2. While accessing configuration settings, we must type check if the configuration
settings adheres to the configuration specification to prevent misconfiguration.

Here we discuss the type checking of configuration specifications, which means to check
SpecElektra for internal consistency.

Goals of Static Checking

Lamport and Paulson [163] summarize debates about static typing of specification lan-
guages. They suggest that it “may be possible to have the best of both worlds by adding
typing annotations to an untyped specification language”. Elektra follows this recom-
mendation: We use properties to add types to an otherwise untyped language.

For lookups, more static checking is preferable because errors at lookup-time cannot be
handled properly. The developer expects that every lookup terminates and returns a
configuration value of the correct type.
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The goals of checking SpecElektra are:

• Defaults must be present for safe lookups (see Section 3.4.6). This goal also implies
that there must be at least one valid configuration setting.

• Layer dependences must not build cycles (see Section 4.4.2).

• Links must not refer to each other in cycles.

• Types of default values must be compatible with the types of the keys.

• Every link and the pointee must have compatible types.

• Every contextual interpretation of a key must yield a compatible type.

Currently, most parts of the specification checker are not implemented in the public
repository and static type checking remains future work. The implementation is expected
to be straight-forward but unfortunately we lacked the time. Some of the goals are part
of a not-yet-included type-checker for SpecElektra.

5.3 Modular Abstractions

Up to now, we discussed context-aware configuration. In this section, we will enhance our
ideas to suitable, context-aware configuration. To recognize suitability of configuration
settings, we need to enable users to specify their requirements. We explain the modular
abstractions of the specification language SpecElektra to improve modularity, and
integrate more applications. We focus on the research question:

RQ 6.3. Which abstractions retain and improve modularity of configuration access in
FLOSS applications?

The section is structured as follows:

1. By unifying configuration access, we put ourself in danger of coupling applications
and reducing modularity. As first step in Section 5.3.1, we investigate how we retain
modularity between applications.

2. As next step in Section 5.3.2, we elaborate on abstractions that improve modularity
beyond the current situation.
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3. With these modular abstractions, we have the potential to connect any configuration
settings within the system, without unwanted coupling. In Section 5.3.3, we will use
the modular abstraction to express requirements and derive suitable configuration
settings from it.

4. In Section 5.3.4, we demonstrate the need of the modularity as introduced before.
We will focus on the area of configuration validation.

Systems become increasingly complex and their requirements more fluid. Only with highly
adaptable systems we have a chance to fulfill user requirements, we did not anticipate
during development. Modularity presents a confirmed mechanism to cope with complexity.
Instead of rebuilding every system from scratch, we aim towards configuring existing
systems to create new systems [19, 230].

Unfortunately, most software does not yet consider to be part of an integral whole.
Most software, however, provides run-time configurability. To integrate an application
into a system, it usually needs to be configured individually. When user requirements
change, many configuration files need to be adapted, which is an error-prone process:
Configuration files differ in their format, and software to access them is implemented
in many languages. To mitigate this problem we introduce modular abstractions, which
enable encoding requirements uniformly as configuration settings to tune the whole
system. These high-level configuration settings automatically influence configuration
settings of every individual application as specified [230].

As running example we use a location-tracking device. On the location-tracking device we
install ntpd. The time synchronization daemon ntpd reads a configuration file named
ntp.conf at startup. In system-wide context changes, such as when the device switches
to battery, the user wants to modify many configuration settings in order to save energy.
One possibility to save power is the reduction of NTP-polling frequency. Some software
directly supports changes of these settings via inter-process communication. To make
changes persistent, however, we have to change the poll settings in ntp.conf. After
changes in ntp.conf, we notify ntpd to reparse its configuration settings without
the need for other inter-process communication. The same steps are applied to other
applications, for example, to reduce the frequency of polling GPS data [230].

In the previous Chapter 4, we introduced techniques that required developers to make
decisions about contexts at design time. Such techniques are not suitable for context and
requirements not known during implementation. We investigate in postponing decisions
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about context until deployment or even run-time. We aim at a language that externally
specifies configuration settings and its context: By specification changes we adapt our
system to the users requirements—even after deployment [230].

Two major directions for configuration accesses are [230]:

1. Some proprietary and embedded systems already have system-wide key databases.
Then every application easily interacts with all configuration settings of the whole
system. Such systems often already employ parts of the suggestions we initially
made.

The downside is the strong coupling of all applications to such a platform. Develop-
ers need to rewrite applications to work with the key database. We want to avoid
such coupling.

2. In other systems, such as most FLOSS applications, every application uses its own
configuration file. Every application has full control over every aspect of its configu-
ration accesses. We gain a fully modular system without compromise. Although the
fully modular approach has some advantages, it completely fails with our Goal Ab-
straction: In such a system, it is practically impossible for an application to access
configuration settings and context of all other applications.

Such systems suffer from the configuration integration problem, making it difficult
to share configuration settings. Applications cannot access other’s configuration
settings for better integration at a large scale. If we want to adapt a system better
to its context, for example, to make it more energy efficient, we need to tinker with
the configuration settings of each application.

We want systems using Elektra to retain current FLOSS applications’ modularity. The
aim is to keep unrelated applications unrelated. SpecElektra shall provide a way to
bring in coupling between configuration files, but in a wanted, specified and controlled way.

For our approach to work we only have two assumptions. Applications shall be:

• configurable to achieve the requirements, and

• provide a way to trigger reloading of their configuration settings.



196 CHAPTER 5. BACKENDS

Modularity is the degree of how well a program is split up in independently reusable
modules [19]. We distinguish two dimensions of modularity in configuration libraries:
vertical and horizontal modularity. We make the distinction in the following way [230]:
Vertical modularity describes how strongly separated the configuration accesses of dif-
ferent applications is. Horizontal modularity describes how strongly separated modules
implementing configuration access for a single application is. Approaches trying to unify
configuration libraries endanger both kinds of modularity [230]:

• They might couple previously unrelated applications. For example, a configuration
library writing to a non-modular key database couples applications performance
wise: If one application stresses the key database, other applications can have
troubles with their performance.

• They might couple specifics of configuration accesses to applications. For example,
if an application has hard-coded information for how to validate its configuration
settings, the application is coupled to a particular validation method in a particular
configuration library.

In the next two parts of the section, we demonstrate mechanisms of SpecElektra that
preserve both dimensions of modularity.

5.3.1 Vertical Modularity

“Vertical modularity is the degree of separation between different applications.” [230]. If
all applications use the same key database with a single backend or a single configuration
file, applications would be coupled tightly. For example, as shown in Figure 5.2, the
applications gpsd and batteryd both employ the configuration library L1. Here we
cannot deploy gpsd nor batteryd without L1. We prefer high vertical modularity: We
want applications to stay independent of each other. If coupling between applications
is low, for example every application uses a different configuration library or a different
backend, we have a high degree of vertical modularity [230].

Elektra provides two mechanisms to retain vertical modularity:

• Mounting configuration files facilitates different applications to use their own back-
end and their own configuration file. Furthermore, mounting enables integrating
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Figure 5.2: Vertical modularity of locationtracker device. Boxes are applications, cylin-
ders are configuration files, F? are frontends or frontend adapters, L? are configuration
libraries [230].

existing configuration files into the key database. Configuration specifications writ-
ten in SpecElektra allow different applications to share their configuration files
with each other in a controlled way.

• Having frontends that implement existing application programming interfaces (API)
decouple applications from each other. These applications continue to use their
specific configuration accesses, but Elektra redirects their configuration accesses
to the shared key database. Because of the underlying shared key database these
frontends improve on the configuration integration problem.

Mechanism 1: Mounting

Mounting allows applications to directly access the configurations settings in configu-
ration files of other applications. The coupling happens in a controlled way within the
configuration specification. We avoid coupling from applications to configuration files.
We use the following specification to define a mountpoint [230]:
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1 [ntp]

2 mountpoint:=ntp.conf

The property mountpoint (line 2) specifies the configuration file ntp.conf to be
mounted at /ntp influencing the subtree with the root /ntp. In Figure 5.2 the application
ntpd accesses its configuration file ntp.conf using the library L2, bypassing Spec-
Elektra. This application is strongly coupled with ntp.conf. The same configuration
file, however, is also accessible through the mountpoint within SpecElektra, which
provides a more modular configuration access [230].

If the configuration specification does not refer to any configuration settings outside
of /ntp, only the configuration file ntp.conf will be loaded. Thus, from the view of
system calls, we retain the same situation as if the applications would directly parse the
configuration file ntp.conf. For performance-wise decoupling, we rely on the capabilities
of the file system.

The reason for the improvement in modularity is that mounting avoids coupling from
applications to specific backends or to specific configuration files. Applications using
configuration settings below /ntp (possibly also indirectly via transformations and links)
retain their independence from the concrete configuration file ntp.conf.

Mechanism 2: Frontends

Providing different frontends decouples implementation internals of different applications.
In the spirit of the adapter design pattern [98] such frontends implement the need of the
application. In the case of F1 in Figure 5.2, the frontend is part of locationtrackerd,
providing a better modularity of the system. Elektra eases creating new frontends by
providing access to configuration settings via lookups in the key set. Frontends only need
to access and update the key set and call kdb.get and kdb.set accordingly.

Such frontends are used without any knowledge and concession of applications. For
example, L1 tries to open a configuration file with the system call open. Because F2
intercepts this system call (dashed line), L1 uses Elektra instead. Then the library
L1 parses a configuration file dynamically serialized by LibElektra [234]. Therefore
indirectly,gpsd and batteryd participate in SpecElektra. Modern operating systems
provide ways to intercept library and system calls without modifications in the source
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code. Neither gpsd, batteryd nor L1 need any coupling to a configuration library in
the source code [230].

The power of such frontends is not limited to system calls: We extend it to library
invocations, for example getenv. In Figure 5.2, F3 implements the getenv interface.
Whenever ntpd calls getenv, F3 redirects the invocation and requests configuration set-
tings from Elektra instead. Again, even though ntpd has no source code modifications,
F3 makes ntpd participating in a unified configuration system.

Finding. Due to the use of application-specific frontends and backends, Elektra does
not endanger vertical modularity.

Because the key set allows us to support many frontends, we do not have the necessity
to have a single API fulfilling all needs, supporting the requirement:

Requirement 8. The configuration access API must be minimal and crafted carefully.

5.3.2 Horizontal Modularity
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Figure 5.3: Horizontal modularity of locationtracker device. Cylinders are configuration
files, P? are plugins [230].
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In earlier work we defined horizontal modularity to be “the degree of separation in
configuration access code” [230]. A higher degree of horizontal modularity allows us to
better separate configuration access code and plug the code together as needed. Spec-
Elektra employs the pipes-and-filters architectural pattern (see P1–P4 in Figure 5.3).
Plugins are pieces of configuration access code that share the same interface. Three
factors of SpecElektra improve horizontal modularity:

1. Using SpecElektra, applications are completely decoupled from configuration
specifications.

2. The plugin assembling algorithm described in Section 3.3.7 abstracts the specifica-
tions written in SpecElektra over concrete plugins. Elektra has no dependence
to other libraries but only concrete plugins introduce dependences. We achieve a
system-level dependence injection.

3. The provider abstractions in the dependences between the plugins abstract over
concrete implementations of configuration access code. Here we reduce the coupling
between plugins.

Finding. Moving configuration specifications and dependences from the applications’
source code to configuration specifications and plugins improves horizontal modularity.

We improve on Requirement 12:
Requirement 12. Dependences exclusively needed to validate configuration settings
must be avoided.

Generic Plugins

Here we describe a technique how we facilitate a single implementation of a plugin to
create different plugins with different features sets. By making plugins more fine-granular,
we achieve better horizontal modularity.

We say a plugin is generic if its feature set cannot be described in a single contract. We
distinguish between static and dynamic generic plugins. Dynamic generic plugins have
non-trivial plugin configuration such as behavioral descriptions, programs, or scripts. For
example, the script plugin lua is a dynamic generic plugin. The plugin configuration
script specifies a Lua-script [230]:
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1 [locationtrackerd]

2 infos/plugins:=lua script=batterytotracker.lua

Different scripts cause the dynamic generic plugins to require different contracts. We
need to take care about not confusing such plugins: They have the same plugin name
but otherwise are hardly related [230].

The static type of generic plugins facilitates compile-time conditionals, which we call
compilation variants. They can only be used if the plugin is written in a program-
ming language that supports compile-time decisions, for example, macros in C. Here the
compiler resolves variability. Compilation variants are beneficial if [230]:

1. We need performance, which conflicts with flexibility.

2. We need the plugin during bootstrapping, where we cannot provide plugin configu-
ration [227].

3. We need nearly-identical plugins depending on different APIs, which cannot coexist
in the same plugin.

We compile the plugin’s code with requested combinations of defined and undefined
macros. Different combinations of macros then can yield different contracts. For example,
the plugin crypto decides which cryptography library should be used via compila-
tion variants [230].

5.3.3 Suitable Configuration Settings

We propose to use configuration settings to encode requirements. Other configuration
settings derive information from these configuration settings. We aim at suitable context-
aware configuration.

Example 5.2. A software running on different devices with different requirements would
use the following specification as requirement [230]:
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1 [device]

2 check/enum/#0:=wearable

3 check/enum/#1:=smartphone

4 check/enum/#2:=car

The configuration setting device can have three different configuration values: wearable,
smartphone, or car. N

To map the configuration settings encoding information for requirements to concrete con-
figuration settings, configuration value transformations are needed. The most important
transformation is assignment between configuration settings:

Example 5.3. As discussed in [230]:

1 [powersaving/gps]

2 assign/condition:=(device != ’car’) ? (battery/level) : (’0’)

3 [gps/resolution]

4 assign/condition:=(device == ’car’) ? (’high’) : (’low’)

We facilitate the plugin conditionals that allows us to specify conditions with
two branches. SpecElektra ensures that the keys powersaving/gps and gps/

resolution are always set according the requirements defined in device [230]. N

We are not limited to transformations from configuration settings encoding requirements.

Example 5.4. We want a device with a low battery to stop polling GPS. Again we use
conditionals [230]:

1 [gps/status]

2 assign/condition:=(battery/level > ’low’) ? (’on’) : (’off’)
N

5.3.4 Modular Type Checking

Compared to checking of configuration specifications, type checking of configuration
settings has a more direct impact on the system. If the validation is not rigorous enough,
misconfiguration is not caught. A too complicated specification language, however, would
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be avoided by developers. No further dependences shall be added to the application if
new validation specifications are added:
Requirement 12. Dependences exclusively needed to validate configuration settings
must be avoided.

To fulfill these diverse requirements, Elektra does not have a single way to validate
configuration. Instead Elektra provides a modular configuration specification language
that enables developers to create their own validation languages. One rationale is that
Elektra validates configuration values to be consistent with their context, even if the
context is not encoded as configuration setting. Here we might need language constructs
for every kind of context. For example, users not only need validations whether a configu-
ration setting contains an IP address but they also need validations whether the address
points to a reachable service. We got the following feedback during the survey described
in Chapter 2: “There are variables which have a huge list of possible values. These lists
are taken from databases. So at the end we have two sources for the possible values: the
configuration specification and the database”.

We could integrate file system metadata, the surrounding network topology, and other
databases within the key database. Then we would exclusively validate data without
external factors. Integrating all data in Elektra crosses the border of having a tool that
is specific enough to be useful. Integrating huge databases, as requested in the survey,
conflicts with other requirements of Elektra.

We propose to have a modular configuration specification language in which users add
their own configuration specification constructs and implement them as plugins. Users
shall be able to combine already existing validation plugins with their own validation
plugins. For example, a user writes a validation plugin querying large databases.

Pluggable Type System

We extend on the ideas of pluggable type systems [12, 115, 209]. The idea of pluggable
type systems is to guarantee the absence of additional errors that would not be detected
by the built-in type system. Users “should be able to choose the kind of static checks one
would like to perform” [115]. This way, we do not introduce problems if we add an exotic
type system for a single application.

For SpecElektra, we decided to adapt such a flexible approach and users can plug in
arbitrary type checkers. Papi et al. [209] suggested to use annotations for additional type
information. Based on the idea, we use properties of keys to describe data types:
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1 [slapd/threads/listener]

2 check/type:=long

3 check/range:=1,2,4,8,16

In line 2, the property check/type states that we use the CORBA data type long.
Different to specifications with the property type, we use the data type only for validation
and not for code generation. In line 3 we further restrict the configuration setting to
some specific values. Because line 3 specifies the configuration setting in a stricter way,
line 2 does not have an influence on the configuration validation. SpecElektra’s syntax
is verbose but with the advantage that adding extensions never causes conflicts because
our model requires us to always use fresh property names.

Two-phase Checking

To provide maximum flexibility and modularity, the checking of the structure and data
types is separated. This separation establishes a two-phase type checking:

Checking structure: For some applications, missing keys is as fatal as non-validated keys.
In a first phase, the structure of the specification is enforced. The phase makes sure that
keys (not) allowed to occur are (not) present. Additionally, it applies concrete dynamic
type information as properties to keys by matching key names with glob expressions.

Example 5.5. The plugin spec is a plugin that checks structure and supports following
glob expressions:

_ denotes an arbitrary hierarchy level, and

# denotes an arbitrary array index.

Thus the specification [a/_/key/#] will match keys such as:

1 a/simple/key/#0=

2 a/nother/key/#_12=value not part of match

The plugin spec also copies metadata to every matching configuration setting. N
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Checking values: In a second phase, the checks given by metadata copied in the first
step are checked for each key. These two phases are independent of each other and have
their own use cases. For the second phase, many data types are supported.

Data Types

We already introduced check/type and check/enum which are two of the data types.
Elektra supports many other data types, each implemented in its own plugin(s):

check/type allows us to specify CORBA data types, as already listed in Example 3.15
on page 87. Checking any is always successful. The record and enum types defined
by CORBA are not part of this plugin but of others as explained below.

check/enum supports a list of supported values denoted by array indexes.

check/bool transforms specific strings, for example true and false, into the canonical
boolean representation, i. e., 0 and 1.

check/ipaddr checks if a string is a valid IP address.

check/path checks presence, permissions, and type of paths in the file system.

check/date supports to check date formats such as POSIX, ISO8601, and RFC2822.

check/validation checks the configuration value with regular expressions.

check/condition checks using conditionals and comparisons.

check/math checks using mathematical expressions.

check/range allows us to check if numerical values are within a range.

trigger/error allows us to express unconditional failures.

Elektra supports binary and string types. Binary configuration values can include null
characters in their string and can have the special value ε. Because binary is only used
on special occasions, for example to represent encrypted values, all validations are only
against string types.

The data types form a lattice, with error as bottom and any as top element [115, 118].
By default, every key has the type any regardless if it is specified using [] or not. Adding
specifications without any properties is useful: It tells the user which of the configuration
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settings are relevant for an application. Every property that additionally specifies a type
restricts the range of allowed values.

Discussion

Up to now, we used type restrictions, also known as subtype in Ada. In Elektra the
specifications are even more flexible than in Ada: They allow a type to be a list of any
checkers. Each of these checkers make the type stricter. This fact makes the types in
Elektra safe to use, even though Elektra’s types do not have a closed model (and
thus can be neither sound nor complete). The trouble-free combination of many checkers
is a pragmatic decision.

To define a structured type, we use the ideas of Relax NG [56]. Our language, defined
by the plugin spec, is simpler because neither attributes nor XML namespaces exist.
Instead of repeating key names, we make key names unique by adding array indexes.
A specification without any property, for example [x], is equivalent to Relax NG’s
zeroOrMore which is the same as Relax NG’s optional in our case. In the area
of structured types, the lack of a closed model is problematic as features can have
unnecessary overlap. The advantage of our open model is that every developer can
participate and applications can choose to use completely different models for their
validation specifications.

5.4 Context awareness without Source-code Modifications

Instead of improving configuration access APIs as done in the previous Chapter 4,
in this section we focus on providing the best user experience with existing
configuration access APIs. The idea is to facilitate configuration access points present in
applications. We retrofit legacy applications by combing the already introduced:

• context-aware lookup from Section 5.2 (as specified in Section 3.3.1), and

• modularity and adaptation of frontends from Section 5.3.

Such a functionality is important because rewriting all applications to new configuration
access APIs is unrealistic. Legacy applications will always play an important role: What
we implement today, will be legacy tomorrow. We want to improve on the requirement:
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Requirement 2. A configuration library must be able to integrate (legacy) systems and
must fully support (legacy) configuration files.

We focus on free and open source software (FLOSS) and configuration access APIs usually
present there. We claim that it is feasible and practical to use software without source
code modifications, and by run-time reconfiguration, upgrade their context awareness.
We aim at exploiting already existing configuration access points in free and open source
software [234], answering:

RQ 6.4. Which techniques enable applications to become more context aware without
any changes in the source code?

5.4.1 Demand

As already stated, context awareness is not an absolute measure. Instead viewpoints always
create demand for more context awareness. We usually do not learn about such situations
before we discuss them with a user. These conflicts with current ideas of context-oriented
software engineering where context needs to be considered already at design time [145].
Hence, context-oriented software engineering is not applicable to existing large software
projects where context is not known beforehand, neither for legacy software [234].

To improve on this problem, we propose to delay context-oriented software engineering
to deployment-time. This way we move decisions about supported contexts to a time
when more about the required contexts is known. We classified three stakeholders [234]:

• the developers, who implement programs with variations useful for context aware-
ness, without defining which variation is used in which situations,

• the system administrators, who enable context awareness in their systems with our
novel context-oriented software engineering during deployment, and

• the end users, who enjoy better context awareness in their systems and can report
missing context awareness to system administrators.

As running example in this section, we use mobile workplaces. For browsers the network
connection is an important context. With different network connections, we require
different proxy settings. We aim at browsers automatically adapting themselves to the
current context. We want browsers to be aware of the current network connection, of the
nearest printers, etc. [232].
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5.4.2 Configuration Access APIs

To avoid any source code modifications, applications must fulfill the following assumptions
to be suitable for Elektra:

1. The applications must have configuration access points present in the source code.

2. Without extensions, we require the use of configuration access APIs at configuration
access points. For example, configuration access points that access data structures
and variables are currently not supported. We do not impose restrictions on the
gestalt of the configuration access APIs.

3. For flawless context awareness the configuration access points must be triggered
perpetually; and not only once at start-up.

Assumption 3 is not strictly necessary, but without it, dynamic adaptation is not possible.
Instead we would need to restart applications on context changes. We focus on situations
where such restarts are not necessary.

Based on our earlier studies in Chapter 2 these assumptions are reasonable. Applica-
tions have plenty of configuration access points, often in the form of an API, which are
called repeatedly. We did not show, however, whether configuration access points control
behavior that is of interest for context awareness.

getenv

The getenv API enables developers to query environment variables. Environment
variables live in a data structure called environ within the processes. They are ini-
tialized once at program startup. In the current implementations, only the process itself
can update environ.

If the user changes an environment variable, for example PATH, only new subprocesses see
the change. This can be wanted, for example, if choosing which compiler to be used for
the next compilation process. Most often, however, this is unwanted and a major usability
problem. For example, a user modifying http_proxy needs to logout and restart all
relevant daemons.

We include getenv for our investigations because it [234]

• is widely standardized, including SVr4, POSIX.1-2001, 4.3BSD, C89, C99 [1],
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• and is supported by many programming languages.

open

Applications use the open API to open configuration files. Its return value is a file
handle, which is processed by further system calls. Usually, applications use it indirectly
via some higher-level API, such as fopen. Different from getenv, the file system is
designed for inter-process communication. Hence, applications can implement reloading
of configuration settings on configuration file changes.

The open system call is

• standardized by SVr4, 4.3BSD, POSIX.1-2001, POSIX.1-2008 [2],

• and available in every relevant programming language, although sometimes with
restrictions for security reasons.

5.4.3 Approach

To make applications use Elektra without any source code modifications, we hijack
their API calls. For example, Web browsers contain code such as [234]:

1 getenv ("http_proxy");

Conventional implementations of getenv would return an outdated proxy after network
changes because environment variables cannot be corrected from outside of processes.
We interpret such getenv accesses as reading a contextual value [234]. Replacing the
getenv implementation with Elektra’s context-aware lookup, unmodified applications
will use context-aware configuration. Contrary to standard getenv, the configuration
setting are consistent with the content of configuration files, fulfilling the requirement:

Requirement 6. Configuration libraries must provide ways to keep transient and per-
sistent views consistent.

Interception

Elektra with interception works as follows:
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• We intercept a pre-main method. In it Elektra bootstraps itself with the help of
initial configuration files. The initial configuration files contain both the configura-
tion settings and specifications for the contextual values [234]. At this early stage
we will pass command-line options to Elektra.

• If the application calls open with its configuration file as argument, Elektra
serializes a configuration file on-the-fly and returns a file handle to it.

• If the application calls getenv with a parameter specified in SpecElektra, Elek-
tra’s context-aware lookup is invoked.

Unfortunately, interceptions of library invocations are platform-dependent. But every
major operating system provides some techniques for interceptions. We implemented
the interception techniques for GNU/Linux using LD_PRELOAD and /etc/ld.so.

preload [234]:

• The environment variable LD_PRELOAD allows us to preload libraries. Then the
symbols of the preloaded library are preferred. This technique does not work during
boot-up of the system.

• The configuration file /etc/ld.so.preload has the same purpose but does not
have LD_PRELOAD’s restriction. Libraries mentioned in this file are automatically
preloaded for every process. We prefer this method, and registered our library, which
implements getenv and open, in this configuration file.

Context Specification

In SpecElektra, the user has to define which getenv parameters and configuration
files shall be controlled by Elektra. In our approach, the frontend responsible for the
interception reads the layers and configuration specifications from keys below /env:

/env/layer contains the layers to use.

/env/override contains the keys that shall be preferred to environment variables.
Example 5.6. Let us specify the return value of getenv("http_proxy") [234]:

1 [env/override/http_proxy]

2 context:=/http_proxy/%interface%/%network%
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Then Elektra takes control over every getenv invocation that has the parameter
http_proxy. Line 2 is the specification as defined in Section 3.3.1. The context-aware
lookup ensures that the contextual value recursively considers context specifications.
After layer switches, the same requested key name can yield different values. We use a
configuration file containing the mapping to concrete values [234]:

1 http_proxy/wlan/home=proxy.example.org

2 http_proxy/eth/work=proxy.example.com

3 http_proxy/%/%=default.example.com

If interface changes to eth and the network to work, the next invocation of
getenv("http_proxy") returns proxy.example.com [234]. N

Context Changes

To always reflect external changes of the context, we have two options. We either pull
changes, or a context sensor, as introduced in Section 5.2.3, pushes changes to all appli-
cations. We implemented both approaches to support more applications and APIs.

Pulling changes works well for configuration access APIs that are called repetitively,
such as getenv. Elektra’s getenv implementation uses the following algorithm [232]:

1 KeySet conf; // global variable used by reload* functions

2 char * getenv (const char * key)

3 {

4 if (reloadNeeded ())

5 {

6 reloadConfiguration ();

7 reloadLayers ();

8 }

9 return ksLookup (conf, Key ("/env/override/" ++ key));

10 }

The continuous polling makes sure that every getenv considers the latest layers and
configuration settings.
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For other configuration access APIs polling does not work. For example, most applica-
tions call open already at startup but provide a way to trigger reinitialization. In such
situations, we use a plugin that triggers application on configuration changes.
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context-aware
implementation

of APIs
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unmodified
applications

uses
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LIBELEKTRA
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Figure 5.4: Architecture of Elektra if used with interception. The common data struc-
ture is the key set (shown in the middle). Bold, blue boxes need to be provided by the
users of Elektra [232].

This architecture shown in Figure 5.4 ensures complete decoupling between context
sensors and applications. Thus the same context sensors are reused for many applications.

In the running example, users change their location or connect a network cable. A context
sensor recognizes such changes and modifies the key database accordingly. The key
database executes the plugins that trigger the applications to reparse their configuration
files when using open interception. For getenv interceptions the triggering is not
necessary because of the polling.

5.4.4 Context-oriented Software Engineering Process

Here we describe a process of how our approach is applied. We expand on our running
example, and show how to use Elektra to enable flexible workplaces. The requirements
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were that applications such as Firefox shall automatically use (1) the nearest printer,
and (2) the correct proxy.
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Figure 5.5: Context-oriented software engineering process.

As shown in Figure 5.5 we split up the engineering team into the roles of system, context,
and platform engineers. In large organizations these roles are implemented by different
teams. Otherwise, different persons act according to the role they get assigned.

System engineers first define the requirements. Then they decide which applications
shall be used. They document their decisions and complete the specification of relevant
configuration settings.

In our running example, one of our requirements is that the browser picks up proxy
settings automatically. Then the system engineers investigate if Firefox has all needed
settings and find it is enough to intercept getenv. They choose Firefox as the unmodified
application to use.

In the role of context engineers we extracted relevant contexts from the previously con-
structed requirements. Context-oriented software engineering works with the hypothesis
that “The factors dynamically changing the system behavior are candidates for con-
texts” [145]. They consider “changing of workplace” as context. Based on the context,
engineers specify the layers. We decided the relevant context consists of two layers: The
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layer network differs for every workplace. The layer interface distinguishes how
someone is connected to the workplace’s network. This permits a user in the same loca-
tion, but connected via a wireless network, to see different printers and use a different
proxy as someone connected via cable. We specified http_proxy and PRINTER_LIST

to automatically use the nearest printer:

1 [env/override/http_proxy]

2 context:=/http_proxy/%interface%/%network%

3 [env/override/PRINTER_LIST]

4 context:=/printer/%interface%/%network%

The context engineers then implement a context sensor that updates the layers interface
and network. The context engineers adapt their network scripts such that the layers
are always set according to the workplace in use. In the example, the context sensors are
trivial one-line hooks in the /etc/NetworkManager scripts.

In the last step, the platform engineers deploy the applications on the organization’s
platforms. They enrich the configuration settings with platform-specific configuration
settings such as concrete proxies and printers. Finally, they install the artifacts and
configuration files produced in the previous steps.



CHAPTER 6
Implications and Open Topics

Freedom only remains healthy if we think about the implications of what we
do on a day-to-day basis.

— Rebecca MacKinnon

In this chapter we evaluate the risks and implications on systems that use Elektra,
answering RQ 7:

RQ 7. What are the risks and implications of introducing Elektra?

Our main concerns are the topics effected most by Elektra. We look into impact on
users. We rely on case studies, experience, and ideas—fully conducted experiments and
benchmarks follow in the next chapter.

In Section 6.1, we look into the administration of the key database. We present implica-
tions and risks of SpecElektra for system administrators.

In Section 6.2, we discuss the impact Elektra has on tooling and show user interfaces.

In Section 6.3, we consider implications on development. In a case study, we found
that development time is reduced and quality improved. We look into maintenance of
applications using Elektra.

Finally, in Section 6.4, we reflect on the security, safety, and quality of Elektra. We
present some metrics of Elektra’s source code and then discuss implications concerning
security and misconfiguration.

215
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6.1 Administration

One of the main goals of Elektra was to make administration of configuration settings
easier in order to avoid misconfiguration. Here we answer RQ 7.1:

RQ 7.1. Which risks and implications does Elektra have for administrating configu-
ration settings?

6.1.1 Sharing of Configuration Settings

As discussed so far, context awareness across applications implies sharing of configu-
ration settings between applications. Sharing is not always a good idea and imposes
risks: Sharing creates dependences between different communities. Because communi-
ties can independently change the semantics of configuration values, sharing introduces
co-evolution, which can lead to breakage.

A countermeasure in place is that we provide transformation of configuration values.
Using the transformation, we decouple applications from the exact configuration value
other applications have. But whenever an application changes its configuration settings,
we need to update the transformation logic. Supporting different versions of configuration
specifications can lead to a complex transformation logic.

We suggest another solution: Instead of directly sharing configuration settings between
applications, we propose to use agreed shared places. From these agreed shared places,
applications transform their configuration settings, as hinted in Example 5.1. There does
not need to be a single central organization for such reusable configuration settings.
Instead projects like EditorConfig.org specify configuration settings to solve specific
configuration integration problems. This way, the risk of changes in the configuration
specification is reduced and configuration specifications have clear ownerships.

Because of the configuration specification, /etc can be left completely empty by default.
A system administrator only needs to add settings to the agreed shared places. Appli-
cations would calculate their default values from these agreed shared places. Using this
procedure, Elektra fulfills Requirement 13:

Requirement 13. A configuration library must mitigate the configuration integration
problem.

It is future work to evaluate the efficiency of mitigation strategies to co-evolution.

EditorConfig.org
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6.1.2 Documentation

Documentation is a valuable artifact. To enable social coding and to understand the
intention of the specifications, we need further properties that document the specification,
contributing to the requirement:

Requirement 14. There must be a support for shipping correct documentation and
examples generated from the configuration specifications.

Even though some tools infer validation specifications [157, 194, 304], most parts of the
configuration specification must be populated and maintained manually [55, 187]. This
applies in particular to documentation. While the type and defaults are already part
of the configuration specification in Elektra, other documentation needs additional
properties. We explain some further properties improving documentation with the aid
of an example extending on Example 0.1:

1 [slapd/threads/listener]

2 check/range:=1,2,4,8,16

3 default:=1

4 description:=adjust to use more threads

5 rationale:=needed for many-core systems

6 requirement:=1234

7 accessibility:=platform engineers

The first line contains the most important information: It specifies the existence of a
configuration setting and its name. The second line tells the system administrator which
configuration values are permitted to be present. Line 3 is already less important for
system administrators. It is more reliable to introspect configuration values because this
reduces the danger of oversight.

The property description in line 4 contains only as much information as necessary
and focuses on behavioral descriptions. It does not repeat other parts of the specifications.
In particular, it does not repeat other specifications, such as default values. Hand-written
documentation that duplicates information from the source code is known to be error-
prone [252]. Instead the description should describe the configuration setting from the
application’s perspective.
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The property rationale is an explanation of why the configuration setting is needed
and why it is specified as it is. Following the concept of documenting architectural
decisions [120], only configuration settings are added if a clear demand for them exists.
Possible reasons for adding a configuration setting are:

1. a requirement,

2. an architectural decision,

3. a technical need, and

4. an ad hoc decision.

For the first three reasons the configuration settings need revalidation on influencing
events, for example, on changes in requirements, decisions and technology. Traceability
links [241] are useful to detect influencing events. Ad hoc decisions need to be revalidated
periodically. If customers never change configuration settings—because the default value is
already the optimal solution—the configuration setting and specification shall be removed.

For most stakeholders only some configuration settings are relevant. The property
accessibility defines who is responsible for a particular key in the configuration
specification. Tools filtering for this property present only relevant configuration settings
to the respective stakeholders. For example, in a graphical user interface the visibility of
a configuration setting is directly derived from accessibility levels.

The risks of these suggestions are:

• That important documentation is missing because no property is obligatory.

• That unnecessary documentation is added for the sake of having a complete set of
documentation properties.

• Enforced properties might have more severe effects than wrong documentation. For
example, the property accessibility can cause problems: If the property is
assigned too strict, some stakeholders will not find the configuration setting they
are looking for.

Thus configuration specifications need to be subject of maintenance by the application’s
developer. Bugs in the configuration specification need to be handled like other bugs.



6.1. ADMINISTRATION 219

6.1.3 Validation

In Elektra, configuration specifications are not hard coded in applications and can
be extended by system administrators. Because kdb.set always enforces validation,
system administrators that only use tools based on LibElektra, fulfill the requirement:

Requirement 9. Validation of configuration settings must happen systematically before
the application is even started.

Without configuration specifications, Elektra works completely without any configu-
ration validation. Every configuration value is either a string or binary data with any
content. This behavior addresses the need to have a low barrier for Elektra’s adoption.
On the downside, the behavior adds the risk that system administrators forget adding
configuration specifications.

Introducing the two-phase type checking has important consequences for the daily
work. It separates checks intended to be extended by developers and system administra-
tors. The first phase (structure check) is usually tightly interwoven with the application’s
configuration settings. Writing such plugins is a challenging development effort and thus
usually is not done by system administrators.

System administrators usually know pattern-matching languages such as globs and regular
expressions well. Thus they can employ the plugin validation to strengthen checks
for their purposes:

1 [slapd/logfile]

2 check/validation:=/var/log/.*\.log

3 check/validation/match:=word

4 check/validation/message:=Policy violation: must be /var/log

Other plugins check if configuration settings are consistent with the context. Such plu-
gins can check the validity of network addresses and the existence of paths in a file
system. For example, to check if the configuration setting points to a existent file, system
administrators use:
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1 [slapd/logfile]

2 check/path:=file

Because of the vast amount of possibilities for checking values to be consistent with con-
text, it is essential that system administrators are able to invent new kinds of consistency
checks. In our design, system administrators combine their own checks with the applica-
tion developer’s predefined structure checks. It remains future work to evaluate up to
what extent system administrators successfully combine different validation techniques.

6.1.4 Error Messages

Currently, system administrators are often confronted with applications behaving wrongly
and not starting up. Employing Elektra, they would instead encounter error messages
from plugins rejecting their misconfigurations. To make their work easier, it is essential
that the plugins give good error messages. Having human-friendly error messages is
challenging [168, 174, 310]. Using Elektra we have, however, a distinctive advantage:
During execution of kdb.set plugins know which keys were changed.

We use information about last-changed keys (a modification bit in metadata µ) to improve
error messages by a simple heuristic: If several keys are potential causers of an error, we
prefer those in the error message that were changed by the user.

Example 6.1. Given the specification:

1 [a]

2 check/type:=long

3 [b]

4 check/type:=long

5 [c]

6 check/range:=0-10

7 assign/math:=../a+../b

If we change b to 10 and a remains unchanged with 5, we have in the following in-memory
configuration settings to be processed by kdb.set:
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1 a=5 ; unmodified

2 b=10 ; modification bit in metadata is only set here

3 c=15 ; unmodified by user but changed later by assign/math

Elektra is capable to inform the user that b was set to an invalid value, even though
the validation failed at c:

Sorry, I was unable to change the configuration settings!

Description: I tried to set a value outside the range!

Reason: I tried to modify b to be 10 but this caused c to be

outside of the allowed range (0-10).

Module: range

At: sourcefile.c:1234

Mountpoint: /test

Configfile: /etc/testfile.conf

For the error message, we are only interested in keys changed by the user. This way we
can pinpoint to a likely source of the error. Unfortunately, plugins need to implement
this feature, and the heuristic can fail.

The error message is personalized and starts with “Sorry” and “I”. This eye catcher is
relevant to improve novice1 programmers’ learning. Lee and Ko [168] found in a study
with a programming game that participants receiving personalized feedback “completed
significantly more levels in a similar amount of time”. Future work is needed to evaluate
the impact of such error messages on the daily work of system administrators.

6.1.5 Context-aware Lookup

If possible, we prefer tools to automatically avoid problems and not only to check for them.
Here we consider implications of SpecElektra as a high-level programming language
with its context-aware lookup features.

Links already allow us to implement simple logics. We easily add new rules where
configuration settings shall be searched for.

1 And as we know, also expert developers and system administrators start as novice when using a
new tool.
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Example 6.2. Let us determine if one of the arguments is set to true, i. e., the string 1:

1 [sw/org/abc/has_true_arg]

2 type:=boolean

3 default:=0

4 override/#0:=/sw/org/abc/arg0

5 override/#1:=/sw/org/abc/arg1

Using override we specify a list of arguments that ensure that the key /sw/org/abc/
has_true_arg yields true if one of the argN is true. N

Cascading lookup requires all namespaces to be inquired exhaustively. Evard [87] proposes
to use cascading lookup but only at configuration file level. Elektra extends these ideas
to individual keys. Administrators employ cascading lookups of applications to have
different configuration settings:

• to try out new configuration settings via command-line options and environment
variables (proc namespace),

• if the application is started from different directories (dir namespace), and

• for different users (user namespace).

System administrators facilitate the cascading lookup to know the configuration settings
an application currently uses—without any manual calculations or guesswork. We fulfill
Requirement 7:

Requirement 7. Configuration settings and specifications must be introspectable.

A layer-based lookup includes even more possibilities to consider context. We gain flex-
ibility but also make the introspection more difficult. With dynamic scoping, the con-
figuration setting can even change for different parts of the same application. We are
still able to introspect each of the possibilities but which of these is used depends on the
layers within the threads and dynamic scopes.

Except for the layer-based lookup, we gain a futz-free system to introspect configuration
values. It remains as future work to evaluate the layer-based lookup from the system
administrator’s viewpoint.
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6.1.6 Discussion

Here we conclude the answer to RQ 7.1:

RQ 7.1. Which risks and implications does Elektra have for administrating configu-
ration settings?

Evard [87] said: “A good abstraction model changes the way in which one thinks.” Allowing
programming of configuration access widens the spectrum of how system administrators
control their systems. Instead of seeing configuration access as a black box, with Spec-
Elektra they get possibilities to introspect and even program configuration access.
System administrators finally get ways to:

• share configuration settings,

• document configuration settings at specified places,

• make configuration validations stricter with more specific error messages, and

• derive configuration settings from context and requirements.

SpecElektra blurs the line of responsibility between developers and system adminis-
trators, which involves risks:

• System administrators need to learn more concepts and need more programming
background. Some of Elektra’s concepts are difficult to grasp, for example, the
context-aware lookup.

• System administrators can loosen or change validation specifications in wrong ways.
Such actions not only open doors for misconfiguration but the tools even give wrong
statements about valid configuration settings.

• System administrators can use wrong plugins, or can implement plugins wrongly.

• System administrators might get even less help in case of misconfigurations because
developers may suspect system administrators to have failed in one of the points
above.

• Layer-based lookups in frontends are too flexible to fully cover Requirement 7.
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6.2 Tooling

A consequence of LibElektra is that configuration management tooling does not need
to be bothered with mechanics how to manipulate specific configuration files. With
respect to the parts that SpecElektra dictates, the tooling has consistent behavior. In
this section we discuss the implications on tooling.

6.2.1 Configuration Management

While many approaches for configuration management [58, 137] exist, they lack good
support for consistent configuration file manipulation and introspection. In the current
situation, the user of the configuration management tool is either severely restricted
in which configuration settings can be changed, or needs to have a working knowledge
about the syntax of involved configuration files. Configuration management tools have
limited possibilities to detect syntactically wrong and non-validating configuration files,
especially if the errors result from context.

Elektra is a good fit for these problems. Using Elektra

1. the mechanisms of how to manipulate configuration files is reduced to key-value
manipulations,

2. with correctly-working storage plugins it is impossible to create syntactically incor-
rect configuration files (assuming every key name and every configuration value is
representable in the respective syntax),

3. configuration settings are always validated before they are serialized to configuration
files, and

4. via introspection the current state of the system can be queried.

The disadvantage is that Elektra needs to be installed and all configuration files need
to be mounted. Furthermore, some concepts such as cascading lookup is not needed for
configuration management and introduces complexity.

6.2.2 Text Editor

Because Elektra usually parses and serializes configuration files from the hard disk,
system administrators can still access these configuration files with a text editor. Directly
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manipulating configuration files, however, does not respect validation, syntax, and no-
tification constraints Elektra otherwise would enforce. Hence, we do not recommend
bypassing Elektra. One solution is to consequently rely on open interception, i. e.,
configuration files are not present in the file system but always passed through Elektra.
In general, however, such a solution is too heavyweight.

As an alternative, Elektra provides a small wrapper around text editors. The wrap-
per’s functionality is that it exports the configuration settings to a temporary file and
spawns the users’ favorite editor with this temporary file. After the editor has terminated
successfully, the wrapper tries to import the configuration file. During the import Elek-
tra enforces correct syntax and validation. This way, we provide a work flow and user
experience almost identical to directly editing configuration files.

6.2.3 Command-line Interface

We created a command-line tool kdb that maps all features of the configuration access
API to the command-line. It is straightforward to transform the declarative syntax we
used in this book to imperative kdb commands.

Example 6.3. Suppose we want to have the configuration settings:

1 a=5

2 b=10

3 c=15

We apply these configuration settings using:

1 kdb set /a 5

2 kdb set /b 10

3 kdb set /c 15

And we list them with kdb ls /. N

Example 6.4. For specifications such as:
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1 [slapd/threads/listener]

2 check/range:=1,2,4,8,16

3 default:=1

We use:

1 kdb setmeta /slapd/threads/listener check/range 1,2,4,8,16

2 kdb setmeta /slapd/threads/listener default 1

And we list them with kdb lsmeta /slapd/threads/listener. N

Given a specification we explore which key names exist with tab completion (implemented
for bash, zsh, and fish, or use kdb complete otherwise). For debugging purposes,
the complete trace of which keys are considered by ksLookup are printed (-v option of
kdb get). This functionality is implemented by using the hook lookupByExtension.

6.2.4 Graphical User Interface

Figure 6.1 shows a screenshot of the graphical user interface. It was the second user
interface after the command-line interface and provides undo functionality.

Figure 6.1: Graphical User Interface of Elektra.
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Figure 6.2: Web user interface of Elektra.

6.2.5 Web User Interface

Figure 6.2 shows a screenshot of the Web user interface. During the still ongoing imple-
mentation of the Web user interface, we explore to what extent a user interface can avoid
misconfiguration even earlier. The idea is to avoid text fields but instead let the user
choose between known-to-be-valid configuration settings inferred from SpecElektra.
Example 6.5. Suppose the administrator wrote the specification:

1 [hello/pk/student/registered]

2 check/type:=boolean

Here the user interface provides a checkbox, making it impossible to enter anything
except true or false. N

6.2.6 Converting Configuration Settings

Another implication of the common data structure is that we can freely convert between
any of two converted formats in Elektra as shown in Figure 6.3. This is useful for im-
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porting and exporting configuration settings. It can help for upgrades if the configuration
file format changed.

Figure 6.3: Convert configuration settings with Elektra.

The conversion enables us to integrate configuration settings as source code. We wrote
the plugin c that outputs the configuration settings as C code. Applications include and
compile these files to have built-in configuration settings.

6.2.7 Discussion

Elektra has advantages for tooling:

• System administrators use configuration management tools easier with and more
confidence: Configuration files automatically use the correct syntax and invalid
configuration settings get rejected.

• User interfaces utilize information from SpecElektra: They show descriptions
and even restrict input fields to improve usability.

Using Elektra involves risks:
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• If system administrators or applications forget to mount a configuration file, con-
figuration settings are serialized to unwanted places.

• The user is dependent on plugin’s decisions with respect to the formatting of
configuration files. Some plugins reformat to consistent but potentially unwanted
style. Other plugins aim at preservation of the original format, which is not ideal
if configuration files are formatted in a chaotic style.

• System administrators might get careless when they edit configuration settings
because they expect their errors to be caught.

• New tools may be refused by system administrators who are used to manipulate
configuration files with their self-written tools. Depending on the setup, bypass-
ing Elektra by directly modifying configuration files is possible, but it is never
recommended.

6.3 Development

In this section, we give experience reports with the lessons learned in software projects
using Elektra.

6.3.1 RQ 7.2: Case Study: Development Time

We investigate RQ 7.2:

RQ 7.2. How does Elektra influence risks of development and time effort if used in a
large real-world project?

Method

We developed an integrated camera system in a one-year engineering project. The project
combined development of software and hardware components. The staff of the software
team varied between three and five full-time software developers. We wrote about 50,000
lines of C and C++ code. We used Scrum [247] as agile development method [227].

The project aimed to engineer a platform for integrating different software applications.
The platform offered more than 200 configuration settings via Elektra. The configura-
tion settings affected both the platform and integrated applications [227]. Many of these
configuration settings were relevant for system administrators.
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Unfortunately, we did not do time measurements during the project. Thus we redid the
parts of the project relevant to configuration access in Elektra’s public repository [227].
We measured the time using stop watches or by calculating time from Git commits.
We argue that these time measurements are more realistic because of the background
from a real-world project. The shown source code is representative for what we did
during the project.

Case Study

We got the basic setup for Elektra running within a day. Hindering factors were that
Elektra was not packaged everywhere and features for unusual requirements were
missing. The basic setup in the main program only consisted of the following lines [227]:

1 #include <camera.hpp>

2
3 int main ()

4 {

5 using namespace kdb;

6 KDB kdb;

7 KeySet conf;

8 Context c;

9 Environment env (conf, c);

10 std::cout << env.camera.name << "\n";

11 }

In the first line, we include the source code generated by GenElektra. After creating a
handle to the key database (line 6), we create a KeySet for configuration specifications,
settings (line 7), and a Context (line 8) [235]. Then we create an instance of the
generated class Environment (line 9). In line 10, we access a configuration setting.
Within minutes new developers started using these configuration settings [227].

To add a configuration setting is also simple. We only needed 2 minutes to specify a new
configuration setting and to use it in the application. Because of this effort being so little,
it is important to take care not to introduce unnecessary configuration settings [305].
Adding the ability to accept command-line options for the configuration setting was done
within 6 minutes [227].
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We heavily relied on the extensibility of Elektra, for example we invented new properties.
These properties are not described in this book because they are specific to requirements
of that project. Extending code generators and plugins to support the new properties
had acceptable effort [227].

Within the same project we had difficulties to extend Elektra to further configuration
file formats. For example, to implement the NTP configuration file format, we estimated
the implementation to need more than a week. To improve on that situation, we evaluated
different ways to implement new configuration file formats more quickly [227]:

Existing Libraries: Integrating existing libraries requires low effort. We must trans-
form Elektra’s data structures to the data structures the existing library uses.

Example 6.6. The INI plugin ni (it implements the syntax of the examples in
this book) had 158 lines of C code and was implemented within less than a day
(10:41:54–16:22:01). For parsing the properties of configuration specifications, in
essence, the following source code suffices [227]:

1 Ni_node mcur = NULL;

2 while ((mcur = Ni_GetNextChild (current, mcur)) != NULL)

3 {

4 keySetMeta (k, Ni_GetName (mcur, NULL),

5 Ni_GetValue (mcur, NULL));

6 }

The code parses a configuration specification in the syntax as used in this book.N
For low-level, event-driven APIs the required effort is higher, even more than one
week, for example, to parse JSON. The main effort for the JSON plugin was to
remember in which (sub)array and (sub)object the key currently is because the
events do not give such hints.

A vast amount of configuration libraries suitable to be integrated in Elektra exist,
and it is usually easily possible to avoid APIs causing extra effort.

Using Grammars: Implementing storage plugins with grammars took us more time
than using typical configuration libraries. Grammars only mitigate the problem
of how to parse but the serialization of the configuration files still needs to be
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done manually. For parsing and serializing a TCL format we needed about three
days (9th August, 2010 12:54:44–12th August, 2010 13:37:35). The advantage of
grammars is that changing the parsing code is as straightforward as changing the
serializer code [225].
Example 6.7. Using Boost.Spirit [225], we needed the following parsing code:

1 query = ’{’ >> *(pair) > ’}’;

2 pair = ’{’ >> key_name > ’=’ >> key_value >>

3 *(’{’ >> metakey_name > ’=’ >> metakey_value > ’}’)

4 > ’}’;

Hand-written parsers: It is the most effort to implement a configuration file parser
by hand. For example, it took about one month to implement a fully-fledged INI
parser that preserves order and comments. Adding many features needs considerable
time—even for seemingly trivial parsers like CSV and hosts.

For extending GenElektra with new features we noticed a similar variety as in parsing.
The one extreme is that adding long option parsing support required less than one
hour implementation time (10:53:30–11:33:04) [227]. The other extreme is implementing
support for contextual values, which took many months and needed research to do it
efficiently. The entry barrier to support new properties turned out to be minimal. Someone
unfamiliar with Elektra wrote support for new properties within several days.

Code generation sometimes drastically reduces efforts. In particular, many artifacts can
be easily kept in sync by generating them from a single specification. GenElektra
currently allows us to generate code in C and C++ and documentation as man pages,
Doxygen, and HTML.

Sometimes refactoring was needed when the hierarchy of the configuration settings was not
adjusted to the features anymore. In this situation, GenElektra was especially useful
because we got immediate compilation feedback of all places that needed adjustment.
Developers easily forget where a configuration setting is used otherwise.

Discussion

We answer RQ 7.2:
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RQ 7.2. How does Elektra influence risks of development and time effort if used in a
large real-world project?

Finding. We were able to use Elektra within a large real-world project successfully.
Many otherwise time-consuming tasks could be done within minutes or hours; in other
cases Elektra did not help. We did not have any requirement that could not be solved
by extending Elektra. Due to time reduction, Elektra increases risks that developers
introduce too many configuration settings. We are positive that the generation of artifacts
related to configuration settings reduces co-evolution.

6.3.2 RQ 7.3: Case Study: Embedded Web Server

We implemented a Web server on an embedded hardware using the high-performance C++
Web development framework CppCMS [31]. As target platform we chose a Raspberry Pi®

Model B because of its low prize and power consumption. In this case study we answer
RQ 7.3:

RQ 7.3. Which features are elegantly realizable in Elektra to configure non-trivial
embedded systems?

Case Study

The configuration specification of all contextual values was only 83 lines long. The
specification contained basic settings needed to run a Web server, to work with hardware
profiles, and to output tampering events. Some of these contextual values are shown below.
From the configuration specification we generated 3500 lines of policy-based, nested C++
classes and command-line option parsing code [226, 235].

Contextual values are well suited to represent server side knowledge about an HTTP
session. We facilitated a specification that used the context placeholders %session%
and %language% [226]:

1 [sw/pi/%session%/language]

2 type:=string

3 [sw/pi/%language%/hello]

4 type:=string
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In the first version of the Web server, we manually implemented the layers [226]. In a
second version, we instead used contextual values [231].
Example 6.8. One of the first steps was to implement the HTTP request handler. The
object out is a stream to write the HTTP response [226]:

1 tc.with<Session>(sessionid)([this]()

2 {

3 out << "<html>\n"

4 "<body>\n";

5 out << "<p>Language: " << language << "</p>";

6 tc.with<Language>(language)([this](){

7 out << "<p>" << hello << "</p>";

8 //...

9 });

10 out << "</body>\n"

11 "</html>\n";

12 });

We use with to have the current session as thread-local context during the HTTP
request handler. Elektra changes all contextual values according to the session including
the contextual value sessionid. Then we can activate the other layers, for example,
language. When we output the contextual values, for example hello, the output will
match with the user’s session and language settings [226]. N

We want to avoid losing session information, for example, the selected language. Elektra
satisfies such persistence requirements by using the following two lines of source code [226]:

1 {

2 std::unique_lock<std::mutex> l = c.requireLock();

3 kdb.set(ks);

4 } // automatic unlocked at end of scope

In the source code above, we require a lock using the Coordinator interface accessed
with c. Afterwards, we use kdb.set to serialize the data structure KeySet ks. The
key set ks contains all values for every context [226].
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In our study we were able to elegantly represent device-wide changes of contexts. For
example, our device was able to report tampering events using motion detection within an
enclosure. When opening the enclosure, the motion detection would trigger. We used an
infrared sensor HC-SR501 connected via the general-purpose input/output (GPIO). On
tampering events, we included the information on the delivered Web pages. To implement
this use case we specified a contextual value [226]:

1 [sw/pi/tamper/%tamper%]

2 default:=0

We used one thread to wait for tampering events via the system call select. If a
tampering event occurs, select returns and we activate the layer Tamper. Eventually
the contextual values in the other threads are updated. We use the contextual value t
(short for tamper) to notify users via the delivered Web pages [226]:

1 select (fd+1, 0, 0, &fds, 0);

2 context.activate<Tamper> ();

3
4

1
2
3t.context ().syncLayers ();

4if (t) out << "tampered!";

Finally, Elektra enabled us to arbitrarily multiplex GPIO via layer activations. We call
the according layers hardware profiles. A hardware profile is a layer that distinguishes
between different hardware setups [226].
Example 6.9. An excerpt of the configuration specification is [226]:

1 [hw/pi/pi/%profile%/folder]

2 type:=string

3 check/path:=directory

4 default:=~

5 [hw/pi/pi/%profile%/tamper]

6 type:=string

7 default:=tamper.txt
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We used the specification with configuration settings such as [226]:

1 hw/pi/pi/gpio/folder=/sys/class/gpio/

2 hw/pi/pi/gpio/tamper=gpio7

3 hw/pi/elitebook/gpio/folder=~/context/pi

4 hw/pi/elitebook/gpio/tamper=tamper.txt

With the hardware profiles, we were able to use ordinary files on our development laptop
while using kernel interfaces on the embedded hardware. Apart from simplifications
during development, the hardware profiles enabled us to have different hardware setups
with the same firmware image [226]. N

As we see from the example, layer activation works without having the target hardware
available: We achieve a hardware abstraction [226].

Contextual values easily emulate the functionality of profiles as described in Section 4.1.2.
Different from profiles, we are:

• not limited in the number of dimensions due to layers, and

• not confronting every developer with the concept; without a need of layers activation,
API users do not need to know about it.

Discussion

We answer RQ 7.3:

RQ 7.3. Which features are elegantly realizable in Elektra to configure non-trivial
embedded systems?

Finding. We wrote a multi-threaded embedded Web server without having to take care
about context and synchronization with the execution environment. Instead all context
specifications were short and located at a single place. Hardware profiles implemented
with contextual values enabled easier embedded development.

Manual implementation of layers was only needed in rare occasions, for example, to
restrict contextual values to specific threads and processes.
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6.3.3 RQ 7.4: Debugging Support

We discuss improved ways to debug and test context-oriented programs answering
RQ 7.4:
RQ 7.4. How can we improve debugging support of context-oriented programs?

The uniqueness of layer names emerged to be valuable debugging information [235]:

Logging facilities know the context under that a contextual value is used [235].

Backtraces are augmented by telling us unique names [235]:

1 #3 0x0000000000407a56 in operator() at first.cpp:1521

2 i = @0x7fffe36b69a0: { ...

3 m_evaluated_name = "/german/germany/%/test" }

Breakpoints use the context as condition [235]:

1 break 1520 if i.getEvaluatedName()

2 .compare("/german/germany/%/test") == 0

Assertions satisfy that a contextual value is in a correct context [235]:

1 assert (i.context ()["language"] == "german");

2 assert (i.getEvaluatedName () == "/german/%/%/test");

The second assertion is more precise. It makes sure that all other layers influencing
the contextual value are deactivated. If the specification is changed, the assertion
triggers instead of covering potential problems [235]; answering RQ 7.4:

RQ 7.4. How can we improve debugging support of context-oriented programs?

Finding. Context-aware logging, backtraces, breakpoints, and assertions helped for de-
bugging. The unique layer names turned out to be valuable.
Implication. Due to run-time introspection of context, Elektra provides helpful de-
bugging experience.
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6.3.4 Reduction of Configuration Settings

An important goal of maintaining configuration settings is to reduce their number [305].
In this section, we present an algorithm that provides feedback about the use of individual
configuration settings in source code and tests.

Motivation

Using Elektra’s abstractions, some decisions can be delayed. For example, developers
do not decide which configuration sources and which configuration file format shall be
used. Postponing decisions often have benefits, for example, it avoids going back and
forth. But postponing decisions also includes risks, for example, keeping the system too
flexible leads to higher complexity. Thus it is important to reduce unwanted complexity
whenever possible. Because it involves so little time to add configuration settings using
Elektra, there is a high risk that developers add too many configuration settings.

To improve maintenance beyond manual checks, we introduce a continuous feedback
mechanism. It assumes that high-level APIs with GenElektra are used. We want to
obtain information whether configuration settings are used and tested. We propose an
algorithm that processes line coverage information in two steps.

Algorithm

The first (optional) step of the algorithm is:

• Run all tests with code coverage.

• Check if generated code, implementing the contextual value, is executed.

• If it is, we know that the configuration setting is used in a test case. Otherwise, we
know it is not tested by the test suite. All these untested configuration settings are
remembered as candidates for the second step.

The second step findUnusedSettings uses mutation testing. We remove one of the
candidates from the configuration specification and try to recompile the software. If it
still compiles, we know that the configuration setting is not used at all. This action is
done for every candidate of the first step. Alternatively, we are pessimistic and assume
that all configuration settings are untested. Here is the algorithm of the second step:
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1 KeySet findUnusedSettings (KeySet untestedSettings,

2 KDB kdb,

3 Builder build)

4 {

5 KeySet unusedSettings = {};

6 KeySet configurationSpecification;

7
8 kdb.get (configurationSpecification);

9
10 for (candidate: untestedSettings)

11 {

12 configurationSpecification.remove (candidate);

13 kdb.set (configurationSpecification);

14 build.recompile ();

15
16 if (build.wasSuccessful ())

17 {

18 unusedSettings.append (candidate);

19 }

20
21 configurationSpecification.append (candidate);

22 }

23
24 kdb.set (configurationSpecification);

25 return unusedSettings;

26 }

We assume that kdb parses and serializes the configuration specification as used by the
software project. The Builder allows us to recompile the software project and check if
the compilation was successful.

Using this algorithm developers get feedback about which configuration settings are
untested and unused. These metrics are valuable for cleanups of configuration specifica-
tions and source code.



240 CHAPTER 6. IMPLICATIONS AND OPEN TOPICS

Evaluation of this algorithm in practice is left as future work.

6.4 Security, Safety, and Quality

We answer RQ 7.5:
RQ 7.5. What are the risks and implications on security, safety, and quality in systems
using Elektra?

6.4.1 Elektra’s Metrics

We start with RQ 7.5.1:
RQ 7.5.1. What are the source code metrics of Elektra and who develops Elektra?

The author of this book developed most parts of Elektra (including all relevant parts
related to the contributions of this book) by himself. The other parts of Elektra were
developed by many other persons. Here we discuss, who contributed which parts and
give statistical data and software metrics.

Method: The data collected here refers to Elektra’s Git repository (https://git.
libelektra.org) till commit 599fc45b4bf9957e and data from OpenHub and GitHub
as found on 21st August, 2017. Most stats were collected by running Git commands, and
then validated with information from OpenHub and GitHub. We used Sloccount 2.26 and
Cloc 1.60 [66] to measure lines of code. Furthermore, code complexity was measured with
Pmccabe 2.6 with “Modified McCabe Cyclomatic Complexity”. We rendered Figure 6.4
with ggplot2 geom_smooth using gam with the formula: y ∼ s(x, bs = ”cs”).

As we see in Figure 6.4, Elektra started in 2004 and we removed some source code
around 2012. This was mainly a cleanup of obsolete bindings (for example, python,
which was reintroduced later), patches for other applications (for example, KDE and
Xserver), and plugins (for example, gconf and filesys [225]). Since then, the lines of code
continuously grew on average.

In total, Elektra has 308,875 lines in all files. Sloccount reports 128,735 lines of code,
while Cloc finds 158,679 lines of code. Sloccount gives an estimation that developing
Elektra from scratch would cost $4,434,280.

About 40 people participated in the development of Elektra, 26 of them have their
names in the credits. Using git blame we found that the author of this book is respon-
sible for 145,534 lines. This is the highest number from all contributors, the next person

https://git.libelektra.org
https://git.libelektra.org
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Figure 6.4: History of lines of code in Elektra as counted with Sloccount and visualized
with smoothed conditional means.

following with 41,166 lines. The author of the book contributed 5,234 commits. In total
he added 502,833 lines, and removed 574,261 lines2.

The author reviewed at least3 726 patches for Elektra. In the reviews we sometimes had
lengthy discussions, in one review we wrote 287 comments. In the bug tracker, Elektra
had 223 open and 616 closed issues. The most commented issue was about the build
server with 152 comments.

The mostly used languages are C with 63,299 lines of code, C++ with 35,521 lines of
code, and C/C++ header with 27,488 lines of code. The core is exclusively in C. C++
was used for tooling and some plugins.

According to Sloccount, most of the lines of code are for tests: about 50,877 lines of code4.
The testing source code contains about 10,179 assert statements. Non-testing source code
in LibElektra has 103 assert statements and 137 logging statements.

Of the remaining 77,858 lines of non-testing code 32,429 are for the 79 plugins.5 Looking
in more detail at the lines of non-testing code for the individual plugins, most plugins

2The small difference is caused by removing source code of others, mainly done in 2012.
3On GitHub alone, not counting emails and previous source code collaboration tools.
4Estimated with Sloccount by counting folders called tests and files called testmod*.
5The plugin ipaddr was not merged at that time.
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are fairly small: The mean is 410 lines of non-testing code, the median is 239 lines of
non-testing code. The source code size is within the suggested optimum of 200–400 lines
of code for modules [124]. Our largest plugins are ni with 3,474 lines of non-testing code,
crypto with 2,393 lines of non-testing code, and ini with 1,997 lines of non-testing
code. Our smallest plugin is journald with 53 lines of non-testing code.

Elektra is packaged for most GNU/Linux distributions. Current packages (Elektra
version 0.8) are known to exist for at least 10 distributions. The maintainers of these
distributions sometimes use distribution-specific tools that improve the quality of pack-
ages, which sometimes improves Elektra. For example, on Debian’s infrastructure most
of Elektra’s unit tests run at many architectures which unveiled architecture-specific
problems. In particular, the Debian maintainer found that the source code for intercept-
ing the function pre-main (to hijack command-line arguments) needed to be different
on the Powerpc architecture.

Elektra’s official build server has about 40 build jobs and 8 build agents. It builds with
three different compilers (GCC, Icc, Clang). The build times are from ten minutes to
half an hour if also memory leak checks are done. We run about 8 build jobs for every
patch under review and nearly all build jobs for every accepted patch.

Pmccabe reported code complexity metrics for 4,121 C/C++ functions in the 546 Elek-
tra’s C/C++ source files. The median for the code complexity is 1, and the mean is
3.7. Two functions were extreme outliers in terms of code complexity. They were inde-
pendently developed but both in plugins related to INI parsing. These outliers had code
complexity 76 and 131.

No vulnerabilities against Elektra were reported.

The author of the book developed the following parts of Elektra by himself:

Core of LibElektra contains mounting logic, lookup algorithms, and delegation of the
work to plugins. The KeySet has origins in earlier source code. Most parts of the
data structure, such as ksLookup as described in Section 3.3.3, were completely
redesigned by the author.

Libtools contains algorithms assembling plugins as described in Section 3.3.7.

Plugins of the author include many small plugins (logging and encodings), some larger
plugins (resolvers and validations), and some storage plugins (C, INI and JSON).
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GenElektra is a prototype with rudimentary error reporting.

Kdb-tool is the command-line tool suite as described in Section 6.2.3. Some commands
of the command-line tool suite were contributed by others.

Interception of getenv and pre-main (for command-line arguments).

The following parts were mainly developed by students of the author:

Augeas is a plugin using lenses as described in Section 1.1.1.

Crypto enables the encryption and signature of configuration files.

Puppet integrates Elektra into Puppet. It supports to mount backends and to set
keys using Puppet.

User interfaces of Elektra that include a website with snippet sharing functionality, a
graphical user interface implemented using Qt, and a web user interface implemented
using Node.js (see Section 6.2).

3-way merge improves merging of configuration settings as described in Section 4.4.3.

Elektra has other contributors, mainly people who are users of Elektra. For example,
people from Oyranos (a color management framework) and Machinekit (a framework for
machine control applications) have contributed to Elektra.

6.4.2 Security Considerations

Here we discuss if it is more secure to implement a configuration file parser (which is
still a popular way, as our survey suggests) or to use Elektra.

From the security perspective LibElektra provides a lightweight solution. LibElektra
does not spawn new threads or processes, nor does it need any special privileges. Lib-
Elektra is only a library that parses and serializes several configuration files. Thus by
design, Elektra does not make any privilege escalation possible—at least not beyond
the privileges of the application. Implementing access control checks within Elektra is
less useful, as they are easily circumvented. Instead isolation techniques of the file system
shall be used [170].

A project we started to elektrify is LCDproc, a software to drive liquid-crystal displays.
Measured with Cloc, LCDproc 0.5.8 has 76,552 lines of code in total. Configuration



244 CHAPTER 6. IMPLICATIONS AND OPEN TOPICS

access code is at least 1,652 lines of code (2 %) which can be fully replaced by Elektra.
Additionally, LCDproc’s modules have even more lines of code that parses configuration
values. This source code is a candidate to be replaced by source code in plugins.

We found three important security considerations:

1. If a parser within Elektra is known to be problematic, applications can immedi-
ately switch to others, without having to wait for upstream changes. Adding the
property mountpoint to the configuration specification and reimporting configu-
ration settings suffices. Other configuration libraries do not have this capability.

2. Elektra has more lines of code than a single configuration file parser. For ex-
ample, LCDproc’s configuration file parser has 1,652 lines of code, while the core
of Elektra has 6,103 lines of code. From the system’s perspective, however, a
solution with Elektra can still lead to less exploitable code because Elektra
intends to replace all other configuration file parsers, too. Another aspect is that
SpecElektra’s specifications have less source code and are easier to understand
than configuration validation code written in low-level languages.

3. Instead of many mostly unmaintained and untested parsers in every application,
Elektra’s parsers are maintained by the Elektra initiative. The Elektra
initiative uses full-automatic checkers to find security problems within the library.
We elaborate on memory safety in Elektra in Section 6.4.3.

6.4.3 Memory Safety

Elektra is mostly implemented in the programming language C, which is an unsafe
programming language [182]. The Elektra initiative uses several techniques to mitigate
the problems coming from this programming language [281]:

Code sanitizers make sure that Elektra does not have undefined behavior while
executing the tests [263].

Static analysis tools such as Cppcheck reparse the source code and yield useful addi-
tional warnings but are inherently incomplete.

Valgrind finds memory and data-race errors [196].
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C Bounded Model Checker (CBMC) [161] proves that assertions always hold with
a source code where the loops are unrolled to a specified depth. Because not
everything is specified using assertions and because of the limitations with loops,
CBMC is incomplete.

American Fuzzy Lop (AFL6) is the state of the art of mutational fuzzer tools [52].
We use it to mutate configuration files and kdb scripts. While it is a highly effective
solution, it is incomplete.

Code complexity tools tell us the code complexity of functions. We use it to decide
about refactoring.

API design is essential to make sure that memory-safety is not circumvented by API
misuse. Unfortunately, despite its design goals, the C API has potential to be
misused because pointers are needed. In the high-level APIs and bindings of Elek-
tra, however, which are the only recommended ways to use Elektra, we are
not aware of design flaws.

Code reviews have some chance to find anything else or at least increase the chances
that the tools are not cheated.

Unfortunately in practice, errors slip through despite all these counter-measures. Never-
theless, it is unlikely that applications put such efforts into their configuration access code.
So Elektra can increase security, despite being implemented in an unsafe language.

6.4.4 Misconfiguration

We continue with RQ 7.5.2:

RQ 7.5.2. What are the implications of Elektra on misconfiguration?

In the introduction, we claimed that Elektra helps in reducing misconfigurations. Here
we discuss in which situations we expected or observed reduction of misconfigurations. We
discuss misconfigurations specific to security later in Section 6.4.5. We report on miscon-
figurations mentioned by Xu and Zhou [303], Nagaraja et al. [195], and Keller et al. [154].

Whether Elektra is resilient against spelling mistakes in configuration files, depends on
which plugins are used. For example, different configuration file syntaxes or capitalization

6A technical whitepaper on details of AFL-fuzz (American Fuzzy Lop) is found here: http://
lcamtuf.coredump.cx/afl/technical_details.txt.

http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
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allowance (using the plugin rename) has effects on acceptance of spelling mistakes. The
largest class of spelling mistakes is covered by the extensive set of data types Elektra
provides. We listed all plugins implementing data types in Section 5.3.4. Using these
plugins, we were able to restrict configuration settings to exactly the allowed characters
and canonicalize different allowed spellings if confusion is unlikely. These features are
beyond the features of other configuration libraries, so Elektra improves the situation.

For structural errors a similar reasoning is applied. One of Elektra’s contributions is
that different user interfaces are available. If the tool shows the structure more clearly
and gives better feedback, we increase usability. For example, a tool suggests to change
settings relevant within a hierarchy. By design the constraints from the key set—as
discussed in Chapter 3—cannot be violated. The user cannot

• add keys into the key set with the same key name,

• create syntactically invalid configuration files by persisting a key set, and

• create a situation where a key is not found by the application (see Section 3.4.6).

Misconfigurations that stem from unawareness of the configuration file syntax should be
greatly reduced. Such misconfigurations should not reach applications anymore because
they are already eliminated during kdb.set, i. e., before serializing the configuration
files (see Section 3.2.2).

With SpecElektra system administrators avoid duplication of configuration settings.
They use the properties override and fallback instead. We are positive that a
reduction of duplication reduces misconfiguration because it eliminates a source of incon-
sistency. Furthermore, system administrators do not need to set configuration settings
that can be derived by default value calculations.

For semantic errors, the plugin system is essential. In plugins, we check for success using
the exact same APIs the application uses later. This way we exclude whole classes of
errors such as:

• Invalid file paths using the plugin path.

• Invalid IP addresses or host names using the plugins network or ipaddr.
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Because the checks occur before the resources are actually used, the checks are subject
to race conditions. For example, a path that was present during the check, can have
been removed when the application tries to access it. In some situations facilities of the
operating system help,7 in others we have fundamental problems.8

Beyond misconfigurations impossible due to Elektra’s design, the rejection rate of
misconfigurations depends on the effort put into writing SpecElektra specifications.
While most of the misconfigurations described above are reliably rejected after adding
a single property, sometimes more elaborate specifications are needed. For example,
Nagaraja et al. [195] discussed two errors (both with mod_jk):

• A name was added at one place, but forgotten at another place.

• A uniqueness constraint was violated.

While such errors can be checked by configuration validations, a redesign of the key names
can lead to a system where wanted constraints are always implicitly fulfilled. For example,
we designed the plugin hosts so that the canonical host name is part of the key name.
With such a design, violation of uniqueness is impossible due to the key set semantics. It
remains to be seen if thinking about how to write validation specifications (and trying
to avoid complicated validation specifications) will lead to better design overall.

For some errors, Elektra needs additional information next to the specifications. For
example, Nagaraja et al. [195] described a situation where the file path was valid but
pointed to a slower hard disk. To detect such situations, we would need performance
requirements encoded as configuration setting and plugins that check the performance
of individual folders. It is unclear if the effort to implement such a plugin is worthwhile.
If we had such a plugin available, however, including such a check would be easy.

It is likely that Elektra helps in situations where users want to share configuration
settings. The presence of key names referring to configuration settings has certainly
benefits compared to manually locating and manipulating configuration files. Tutorials
can use configuration settings in a format for which Elektra provides a reliable import.

We are positive that Elektra yields better error messages than most of the previous
configuration libraries. Even more important, Elektra provides diagnostics and trouble
shooting support. Elektra enables throughout introspection of all configuration settings.

7For example, we open the file during the check and pass /proc/<pid>/fd/<fd> to the application.
This file cannot be unlinked, but unfortunately the file descriptor requires resources.

8For example, if the host we want to reach has gone offline after validation.
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We do not know yet if Elektra helps with compatibility problems. Some misconfigura-
tions are out of scope for Elektra. For example, installation of applications needs to
be done by configuration management tools on top of Elektra.

A quantitative evaluation showing significant reduction of misconfiguration, is still missing.
Nevertheless, as discussed above, Elektra helps in many cases of misconfigurations.

In particular, we can facilitate the main contribution of our book, i. e. context-aware
configuration, to reduce misconfiguration. We can use the configuration settings and
hardware information of the system to derive configuration settings. Ideally, the config-
uration settings are also automatically adapted to new situations as shown in the use
case of flexible workspaces in Section 5.4.4.

6.4.5 Secure Configuration Settings

Currently, in FLOSS ecosystems security patches are unable to efficiently enforce presence
of specific values in configuration files. Completely patching the insecure functionality
away, however, breaks some legacy systems. We propose to use configuration settings as
requirements that specify security levels. Once the user tries to configure the application
to be too insecure, the validation checker fails. Elektra guarantees that the application
only receives data as specified in the configuration specification. Distributions change
the specification to enforce that insecure configuration settings are avoided. System
administrators that need to maintain legacy systems can weaken the security levels. We
do not recommend exposing the security levels to end users.

Using the introspection Elektra enables monitoring of security relevant configuration
settings. Tools are able to warn users about non-recommended configuration settings. For
example, Nagaraja et al. [195] described a case where a study participant forgot assigning
a password for the MySQL root user. Using Elektra, we easily integrate checks that
warn on such situations.

Elektra supports signing and encryption of configuration settings. This way, unwanted
tampering of configuration settings is detected. The encryption is particularly important
for configuration settings that contain passwords as often found in .netrc (a configura-
tion file containing login data). Elektra relies on security and key management of gpg,
which is an encryption and signing tool.

Further work is required to evaluate the security implications in more detail.
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6.4.6 Discussion

We answer RQ 7.5 and its subquestions:

RQ 7.5. What are the risks and implications on security, safety, and quality in systems
using Elektra?

Finding. Security: The metrics show that Elektra has more lines of codes than a
configuration parser by itself. Implications and risks on security are manifold: Some
risks may be higher but Elektra gives more ways to deal with them.

Safety: Elektra avoids several classes of misconfiguration and enables us to deal with
other classes, sometimes with little effort.

Due to Elektra’s flexibility and configurability, Elektra might introduce new
kinds of misconfigurations. Problems that might occur during writing the specifica-
tions were discussed in Section 6.1.

Quality: Users might not be aware of individual’s plugins low quality. We mitigated this
issue by automatic selection of plugins.

Elektra makes complexity—that previously has been resolved manually by sys-
tem administrators—explicit. Potential bugs in manual configuration processes are
moved to potential bugs in Elektra.





CHAPTER 7
Evaluation

Courage doesn’t happen when you have all the answers. It happens when you
are ready to face the questions you have been avoiding your whole life.

— Shannon L. Alder

In this chapter, we evaluate Elektra. In Section 7.1, we benchmark the frontends.
In Section 7.2, we compare solutions of a cascading lookup implemented in a frontend
and in a backend. In Section 7.3, we evaluate the overhead of Elektra’s modularity
in backends. Finally, in Section 7.4, we conduct a large-scale evaluation of introducing
context awareness in software without source code modifications using Elektra. Overall,
we strive to answer RQ 8:

RQ 8. Which software characteristics change if Elektra is applied?

7.1 Performance of Frontends

We benchmark the frontends in the order as they were introduced in Chapter 4, answering
RQ 8.1:

RQ 8.1. What are the performance characteristics for applications specifically pro-
grammed for Elektra?

7.1.1 Method

We measured the performance of applications using Elektra on two devices:

251
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• Raspberry Pi® Model B using the ARMv6 architecture. We will refer to the device
as “Raspberry Pi” in later text.

• Hp® EliteBook 8570w using the central processor unit (CPU) Intel® Core™ i7-
3740QM @ 2.70GHz. We will refer to the laptop as the “EliteBook” in later text.

We used the operating system Debian GNU/Linux Wheezy 7.8 with the architecture
armhf (Raspbian) and amd64, respectively. We did not change the default compiler
GCC 4.7.2-5 (+rpi1 on Raspbian). The systems were not altered for performance im-
provements, for example, the maximal number of file descriptors remained unchanged
with its default 1024 [226].

For measurements we used gettimeofday with the following Timer implementation:

1 #define TIMER_NOINLINE __attribute__ ((noinline))

2 class Timer

3 {

4 public:

5 TIMER_NOINLINE void start ()

6 {

7 gettimeofday (&begin, nullptr);

8 }

When stopping the Timer, we use gettimeofday again and then calculate the result:

1 TIMER_NOINLINE void stop ()

2 {

3 gettimeofday (&end, nullptr);

4
5 timer_t result = end.tv_sec - begin.tv_sec;

6 result *= usec_factor;

7 result += end.tv_usec - begin.tv_usec;

8 results.push_back (result);

9 }
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For the Timer, we use the following data types:

1 private:

2 struct timeval begin;

3 struct timeval end;

4 typedef long long timer_t;

5 typedef std::vector<timer_t> results_t;

6 results_t results;

7 static const timer_t usec_factor = 1000000LL;

8 };

We globally instantiated a Timer for every source code to benchmark. We called start
and stop for every measurement. We repeated every measurement 11 times and report
median values. We chose the number 11 because then the median is a measured value
and not an average of two values.

Threats to Validity

It is well-known that experimental analysis requires high standards [140]. Measuring
with gettimeofday has several problems: It fails under untypical load, when the clock
adjusts itself, etc. To mitigate these problems, we repeated every measurement 11 times.
Outliers are likely due to problems in the measurement. We define outliers to be data
points not within 1.5∗interquartile range. We report medians to exclude these outliers.

The experiment conduction can be flawed. Thus we conducted most experiments from
scratch many times.

Source code of the benchmarks is found in Elektra’s repository:

https://git.libelektra.org

7.1.2 RQ 8.1.1: Context-aware APIs

Context-oriented programming typically yields a major drawback: Overhead of 75 %1 to
99 % [17] is a criterion for exclusion for many types of real-world applications. Improving
performance is one of the major claims of our chosen contextual values’ design. We answer
RQ 8.1.1 [235]:

1cj and ContextL performed better in specific cases.

https://git.libelektra.org
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RQ 8.1.1. How much can we improve the performance of configuration access using
context-oriented programming?

Method

We evaluate the impact of the number of active layers at run-time by activation of zero
to nine layers. We use the same setup as used for the comparison of the different imple-
mentation techniques described in Section 4.2.3. As already explained in Section 4.2.3,
we use a loop with 100 billion (100,000,000,000) iterations. Different from before, we use
a with statement outside the loop.

Example 7.1. Using two layers the source code looks as follows [235]:

1 s.context ().with<Layer1> ().with<Layer2> ()([&]

2 {

3 s.bm = value;

4 Integer::type x = 0;

5 for (long long i=0; i<iterations; ++i)

6 {

7 x ^= add_contextual (s.bm, s.bm);

8 }

9 dump << x << endl;

10 });

The variable value is the predefined constant 55 and s.bm is a contextual value. To
make sure that the calculation takes place, we dump the calculated value to a file (line 9).N

Result

Figure 7.1 shows the measurement of our implementation (“context cmp noif”, as pre-
sented in Section 4.2.3) and the measurement with native non-contextual variables (“na-
tive cmp noif”). In our benchmark, the implementation has no run-time overhead com-
pared to native non-contextual variables [235].

As shown in Figure 7.2, increasing the number of active layers does not measurably affect
the performance. All differences are within 20 milliseconds. Because of the huge number
of loop iterations (100 billion), accessing contextual values is the dominant factor, and
activating layers is negligible [235].
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Figure 7.1: Comparison of contextual values to native performance of variables [235].
The figure shows a boxplot with linear scale. Black dots are outliers, i. e., measurements
not within 1.5∗interquartile range [226].

●

●

●

●

●

● ●

27.14

27.16

27.18

w
it
h
 0

 l
a
y
e
r

w
it
h
 1

 l
a
y
e
r

w
it
h
 2

 l
a
y
e
r

w
it
h
 3

 l
a
y
e
r

w
it
h
 4

 l
a
y
e
r

w
it
h
 5

 l
a
y
e
r

w
it
h
 6

 l
a
y
e
r

w
it
h
 7

 l
a
y
e
r

w
it
h
 8

 l
a
y
e
r

w
it
h
 9

 l
a
y
e
r

E
xe

c
u
ti
o
n
 t
im

e
 (

s
)

Figure 7.2: Access with active layers [235].
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Discussion

The reason for the absence of performance overhead is simple: Compilers perform aggres-
sive optimizations—such as inlining the method that accesses the cache of the contextual
value—completely eliminating the performance overhead. There is, however, no guarantee
that the compiler actually does such optimizations.

We answer RQ 8.1.1:

RQ 8.1.1. How much can we improve the performance of configuration access using
context-oriented programming?

Finding. In our model accessing contextual values can be without overhead—regardless
of the number of active layers. Only constant memory overhead occurs for each contextual
value.

API users do not have to restrict the use of contextual values directly in loops and
performance-critical code, fulfilling the requirement:

Requirement 10. Developers must have guarantees that read-only configuration access
is fast and updates only happen if wanted.

Avoiding non-context-aware copies of contextual value makes sure that context and
updates are always considered, helping in the requirement:

Requirement 6. Configuration libraries must provide ways to keep transient and per-
sistent views consistent.

7.1.3 RQ 8.1.2: Web Server: Multi-thread Overhead

Here we benchmark the first version of the Web server introduced in Section 6.3.2. We
exclusively use the multi-threaded contextual values of Elektra’s frontend.

Method 1

We conducted the first benchmark on the EliteBook (see Section 7.1.1). We measured
replies per seconds by executing httperf using the arguments [226]:

httperf --hog --num-conn=600000 --rate=6000 --server localhost
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We determined num-conn and rate by optimizing for highest throughput with close-to-
zero errors. To make the setup better reproducible we did not manually tamper the device.
Instead we implemented a loop simulating a tampering event every N nanoseconds [226]:

1 while (!shutdown)

2 {

3 tc.activate<Tamper> ();

4 std::this_thread::sleep_for (N);

5 tc.deactivate<Tamper> ();

6 std::this_thread::sleep_for (N);

7 }

Result 1

The loop produced a high number of layer activations and deactivations but even with
only a nanosecond delay (N = 1) we could not measure any decay of replies per seconds.
Only by removing the delay altogether we experienced slowdown [226].

Method 2: Realistic Long-held Locks

We suspected that the slowdown is caused by internal synchronization barriers of the
Coordinator. To explore this effect, we started with a realistic setup: The source
code, responsible for serializing configuration settings, needs to hold a lock. We wrote an
endless loop executed in the background to continuously require and release a lock while
serializing configuration settings.

Result 2

In this scenario, again we could not measure any performance decay [226].

Method 3: Enforced Long-held Locks

Due to lack of realistic setups, we enforced locking of the internal synchronization barriers
for a fixed time of 10 milliseconds. Then we vary the time variable L, during which the
internal synchronization barriers are not locked [226]:
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1 while (!shutdown)

2 {

3 std::this_thread::sleep_for (milliseconds (L));

4 t.syncLayers ();

5 std::unique_lock<std::mutex> l = c.requireLock ();

6 std::this_thread::sleep_for (milliseconds (10));

7 }

The method requireLock returns a lock for the internal synchronization barriers. With
unique_lock we keep this lock until the end of the block implementing the loop, i. e.,
until the next loop iteration starts. In this loop we always lock internal synchronization
barriers for 10 milliseconds, while the unlocked time is controlled by L.

Result 3
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Figure 7.3: HTTP replies and requests per second measured using the EliteBook. Requests
nearly perfectly overlap with the replies, and are thus hardly visible in the graph. We
increase the lock-free time L in milliseconds. The time L = 10 corresponds to 50 %
lock-free time. We measure both reply and requests to indicate the occurred errors [226].
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As we see in Figure 7.3, with 14 milliseconds, i. e. 58.3 % unlocked time, we achieve
the full throughput time of 6000 replies per second. With shorter lock-free periods re-
quests and replies per seconds descent. A difference between requests and replies is an
unwanted error rate.

Method 4: Embedded Single-processor System

On a single-processor system the picture looks differently. We again use the loop of
Method 1. In the next benchmark we started the Web server on the Raspberry Pi.
The benchmark tool httperf was running on the EliteBook. The two devices were
connected via an 100MB/s switch. When optimizing the throughput rate with minimal
error rate, we found 150 replies per second to be the maximum. Therefore, we used
the following arguments [226]:

httperf --hog --num-conn=15000 --rate=150 --server pi

Result 4

As we see in Figure 7.4, in this single-core embedded setup a performance decay is clearly
visible. The decay starts at a sleep time of around 7 milliseconds [226].

Discussion

We do not expect enforced long-held locks to be a problem because it is a programmer’s
error to lock the Coordinator for such a long time [226]. If we use expensive serialization
techniques2, we easily avoid long locks with the following source code:

2In the benchmarks, we did not find a serialization technique expensive enough to create a problem.
But, for example, network delays of 10 milliseconds would be equivalent to forced locks of 10 milliseconds.
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Figure 7.4: HTTP requests and replies per seconds using Raspberry Pi. We decrease
layer switches per milliseconds (N). We show both requests and replies to make visible
that the error rate is low [226].

1 KeySet duplicate;

2 {

3 std::unique_lock<std::mutex> l = c.requireLock ();

4 duplicate = deepDup (ks);

5 }

6 // serialize without holding the lock

7 kdb.set (duplicate);

Duplicating a key set is, compared to the serialization, an efficient operation. Nevertheless,
we did not come in a situation, which would require the additional two lines of code (lines
1 and 4), answering RQ 8.1.2:

RQ 8.1.2. What is the overhead of context changes in an embedded, multi-threaded
use case?
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Finding. We found Elektra to be suitable for an embedded Web server setup, even with
a high number of layer switches. The current implementation of Elektra is sensitive
to long-held locks.

We found multi-thread layer switches to be more efficient in multi-core setups. In multi-
core setups, the task of switching layers is done in another thread as background task.

7.1.4 RQ 8.1.3: Performance Comparison

We address RQ 8.1.3:

RQ 8.1.3. What is the cost of Elektra’s individual operations?

Method

For the following benchmarks, we again use gettimeofday with Timer. Each bench-
mark invokes specific operations 100,000 times. We reduced the number of invocations be-
cause the following operations are more expensive. We measured overhead of ksLookup
using a small key set searching for a non-present key. The operation context.evaluate
(see Definition 3.48 on page 111) is used to replace 3 context placeholders in a 43 char-
acters long string. The operation switch means that we use activate followed by
deactivate. For withN and switchN benchmarks 50,000 loop iterations are enough
to perform 100,000 invocations. We started each benchmark eleven times. We report the
results of benchmarks executed on the EliteBook [226].

Result

As shown in Figure 7.5, the C++11 hash map lookup is the fastest operation
(0.016 seconds). The lookup in Elektra’s KeySet (ksLookup) is about twice as slow
(0.03 seconds). The operation syncLayer takes about 0.08 seconds. The operation
context.evaluate (named evaluate in Figure 7.5) needs 0.11 seconds [226].

As demonstrated in Figure 7.6, the number of connected contextual values influences the
execution time [226].

Discussion

We expect ksLookup to be slower than a hash map lookup due to its additional fea-
tures. For example, cascading lookups have extra treatment to handle specifications and
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Figure 7.5: Comparison of the duration of operations executed on the EliteBook [226].
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namespaces. From Figure 7.6, we conclude that costs increase linearly in time with a
larger number of connected contextual values. The difference between switch and with
is a small constant offset [226], answering RQ 8.1.3:

RQ 8.1.3. What is the cost of Elektra’s individual operations?

Finding. All of Elektra’s operations have little overhead if only a few values are con-
nected. The operations activate and with have linearly more execution time depending
on the number of connected contextual values.

Implication. Developers need to take care to only connect contextual values with layers
as needed.

7.1.5 RQ 8.1.4: Resource Utilization

We deal with RQ 8.1.4:

RQ 8.1.4. How is Elektra’s resource utilization of hard disk storage?

Method

We measured the binary sizes of executables using the command ls.

Result

The binary of the stripped library libelektra.so.0.8.10, i. e. LibElektra’s core,
has a size of 109,912 bytes on amd64, and 98,456 bytes on armhf. The over 50 plugins
range from 8 kilobytes for an iteration plugin to 100 kilobytes for a type-checker plugin.
To parse INI files, we need an additional plugin that occupies 22,760 bytes (libelektra-ini).
To resolve file names in a multi-process-safe and multi-thread-safe way, 47,560 extra bytes
are needed (libelektra-resolver) [226]. As comparison, the library libxml2.so.2.8.0
(that is used by others for the same purpose, i. e., configuration file validation and parsing)
requires 1,436,984 bytes on amd64 and 1,196,108 bytes on armhf.

Discussion

Because of the high degree of modularity within our implementation, users can choose
which plugins to install. This way, only space for needed functionality is occupied—leading
us to the answer of RQ 8.1.4:

RQ 8.1.4. How is Elektra’s resource utilization of hard disk storage?
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Finding. Elektra has a smaller binary size than XML libraries, about 1
10 if including

typical functionality.

Implication. Elektra is well suited for embedded systems and otherwise resource-
constrained systems.

7.1.6 RQ 8.1.5: Activation of Contextual Values

We want to respond to RQ 8.1.5:

RQ 8.1.5. What are the performance trade-offs towards high-level abstractions for
context changes?

Method

We benchmarked Elektra on the EliteBook as described in Section 7.1.1. Because a
long time passed during these experiments, we upgraded the operating system to Debian
GNU/Linux Jessy 8.4 amd64, which has the compiler GCC 4.9.2-10 as default. We again
did not alter the systems for performance improvements but on our system the maximum
number of file descriptors was increased to 65, 536 [231].

We created four microbenchmarks. Each of them measures the cost of activating layers
1,000 times. Every shown number is the median value from 11 executions. The main
design criteria for the microbenchmarks are their merits for helping in deciding which
activation strategy to use. The results and discussions of all four microbenchmarks follow
afterwards. For all benchmarks, we use the following variables [231]:

1 Timer t; // see Section 7.1.1

2 ThreadContext c; // see Section 4.3.4

3 Value<long> tcv; // contextual value for benchmark

Our first benchmark (activate) measures layer activations using layer classes Layer0
to Layer8 [231]. In this benchmark, we do not activate contextual values, but we pass
n contextual values using the parameter cv. The contextual values cv and tcv are
connected with the context c. The parameter n ranges from 0 to 9, activating no layer
for n = 0, activating Layer0 for n = 1, activating Layer0 and Layer1 for n = 2, etc.



7.1. PERFORMANCE OF FRONTENDS 265

1 void benchmarkActivate (std::vector<Value<long>> & cv, long n)

2 {

3 t.start ();

4 for (long i = 0; i < 1000; ++i)

5 {

6 if (n>0) c.activate<Layer0> ();

7 // ..

8 if (n>8) c.activate<Layer8> ();

9 x ^= tcv + tcv;

10 }

11 t.stop ();

12 }

We take the measurement between line 3 and line 11. Lines 6–8 contain the relevant
parts to be measured. We added line 9 to disable aggressive compiler optimizations that
would eliminate the loop. This line does not affect the measurement because it only reads
contextual values. We know this operation is as fast as reading native variables [231].

In the second microbenchmark (activate cv), we avoided context-unaware activation
and used the contextual-value-activation feature introduced in Section 4.4. In the lines
6–8, we activated 0 to 9 contextual values (the 9 contextual values are called cv[0] to
cv[8]), which activated 0 to 9 layers [231]:

1 void benchmarkActivateCV (vector<Value<long>> & cv, long n)

2 {

3 t.start ();

4 for (long i = 0; i < 1000; ++i)

5 {

6 if (n>0) c.activate (cv[0]);

7 // .. <continues on the next page>
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8 if (n>8) c.activate (cv[8]);

9 x ^= tcv + tcv;

10 }

11
12 t.stop ();

13 }

In the third benchmark (sync), we facilitate the sync feature as described in Section 4.4.
Line 7 synchronizes all n contextual values passed as argument. For every activation
every contextual value must be recalculated. Here we do not reload contextual values
from the execution environment [231]:

1 void benchmarkSync (std::vector<Value<long>> & cv)

2 {

3 // cv.values () contains 0 to n contextual values

4 t.start ();

5 for (long i = 0; i < 1000; ++i)

6 {

7 c.sync ();

8 x ^= tcv + tcv;

9 }

10 t.stop ();

11 }

In the forth microbenchmark (reload), we additionally synchronized the execution envi-
ronment. In this benchmark, we parsed configuration files from hard disk before every
sync. As described in Section 3.2.2, due to an optimization repeated invocations of
kdb.get would not repeatedly parse unchanged configuration files. Therefore, we used
a new KDB instance for every kdb.get (lines 3–4, and line 8) [231], which forced kdb

to parse the configuration file:
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1 void benchmarkReload (std::vector<Value<long>> & cv)

2 {

3 std::vector<KDB> kdb;

4 kdb.resize (1000);

5 t.start ();

6 for (long i = 0; i < 1000; ++i)

7 {

8 kdb[i].get (cv.values ());

9 c.sync ();

10 x ^= tcv + tcv;

11 }

12 t.stop ();

13 }

Result

The results of all four microbenchmarks are displayed in Figure 7.7. Again the number of
activations is dependent on the contextual values to be updated. More flexible activation
strategies have additional costs (activate cv and sync). Round trips to persistent,
textual configuration files add a constant overhead (reload) [231].

Discussion

Figure 7.7 indicates that we have a linear increase of execution time if more contextual
values or layers are involved. The offset in the reload benchmark is large but constant,
only measuring the time to parse the configuration file [231]. We answer RQ 8.1.5:

RQ 8.1.5. What are the performance trade-offs towards high-level abstractions for
context changes?

Finding. The run-time overhead of activating contextual values is comparable to activa-
tions of layer classes. Higher-level abstractions such as synchronizing all layers are more
expensive.
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Figure 7.7: Comparison of 1,000 iterations with four microbenchmarks: activate: directly
activate layers; activate cv: activation of contextual values; reload: sync with reloading
from persistent storage; and sync: sync all contextual values in memory. We increase
the number of activations of layers or contextual values [231].

7.1.7 RQ 8.1.6: Web Server: Inter-process Layers

Here we benchmark the second version of the Web server, which has been introduced in
Section 6.3.2. We already benchmarked the first version of the Web server in Section 7.1.3.
Here we benchmark inter-process layers, answering RQ 8.1.6:

RQ 8.1.6. What is the overhead of high-level abstractions for context changes in em-
bedded scenarios?

Method

We extend the Web server benchmark to use reloading from configuration settings in
the way as benchmarkReload does. Although in our setup we use a thread for context
changes, by design several processes can be used instead. In this benchmark we found
2,200 requests per seconds as highest throughput without errors. Again we use httperf
on the EliteBook via localhost [231]:
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httperf --hog --timeout=1 --rate=2200 --num-conn=50000 \

--num-call=1 --server=localhost

Result

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9

Sync time (ms)

N
u

m
b

e
r 

p
e

r 
s
e

c
o

n
d

 (
1

/s
)

●●

●●

reply

request

Figure 7.8: Request and reply rate of a Web server. The sync time is the wait interval
given in milliseconds. The interval is used to sleep until the next activation of inter-
process layers [231].

In Figure 7.8 there is an effect for sync times below 3 milliseconds. We see a small error
rate (difference between requests and replies) in the sync times of 2 and 4 milliseconds.

Discussion

We expect that with frequent synchronizations the internal barriers in Coordinator

are locked too long, reducing the throughput [231]. We answer RQ 8.1.6:

RQ 8.1.6. What is the overhead of high-level abstractions for context changes in em-
bedded scenarios?
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Finding. Different from multi-thread layer switches, inter-process layer switches have
measurable overhead in a Web server setup but only for switch rates every few milliseconds.

Implication. Elektra is efficient enough to be used in embedded applications. The
number of context changes has a small effect, even with inter-process layer switches [231].

7.2 Comparison: Frontends Versus Backends

For some features it is unclear if an implementation is better done in the frontend or in
the backend. In this section we investigate RQ 8.2:

RQ 8.2. What are the considerations to implement a feature in the frontends versus in
the backends?

Arguments in favor of implementing features in the backends are:

• that the features are immediately available consistently for all frontends,

• that tools with different frontends have the same behavior, and

• system administrators can manipulate the specification without recompilation.

The main argument for implementations in the frontend is performance: The code gener-
ator is not restrained by a common data structure and can introspect the specification at
compile-time. Nevertheless, we recommend conducting a benchmark before features are
woven into the frontends. Unfortunately, such benchmarking is time-consuming and it is
unrealistic that every decision is backed up by a benchmark. Thus we demonstrate in a
benchmark a more complicated algorithm that features several aspects relevant for such
decisions. We guide through a benchmark for cascading lookup with links and names-
paces, as defined in Section 3.3.2. We took this algorithm because of its high number of
property lookups.

7.2.1 Method

We conducted the benchmarks again on the EliteBook as described in Section 7.1.1. The
operating system at that time was Debian GNU/Linux Wheezy 7.5, with GCC compiler
version 4.7.2-5. We ran every benchmark eleven times for the boxplots [227].
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We implemented two variants of the cascading lookup algorithm: for the backend and
for the frontend [227]. Here we summarize important differences:

In the backend variant properties needed for decisions are available via metadata.
We cannot know in advance which properties are present. Instead in this variant,
we always need to exhaustively introspect every relevant property.

As precondition, applications need to be able to successfully read the configuration
specification. To avoid this precondition to fail, we recommend having a built-in
copy of the specification. Then the application starts up without a working key
database as demonstrated in Section 3.4.6 [227].

In the frontend variant the source code implementing the properties is woven into
the application’s source code. In this variant, the code generator only adds source
code for specified properties. If no link is specified, we get the same source code as
if the feature did not exist at all. This variant avoids any overhead if no properties
are present.

We implemented and measured both the frontend and the backend variant. We measure
ksLookup with N override links. We make 200,000 lookups with a contextual value.
To make sure that we call ksLookup, we synchronize the contextual value’s cache for
every access. We always use a KeySet with five keys. The key to look up has N = 0 to
9 override properties [227].

Example 7.2. The key with 2 properties override is [227]:

1 [benchmark/#2]

2 default:=33

3 type:=unsigned_long

4 override/#0:=/benchmark/override/#0

5 override/#1:=/benchmark/override/#1

As next step, we benchmark a word counting tool that reimplements the standard UNIX
tool wc. We intensively used the property override (algorithm given in Section 3.3.2)
in SpecElektra for the elektrified tool wc. We utilized the technique as described in
Example 6.2 to implement the check if different features are combined [227]:
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1 [sw/wc/show/max_line_length]

2 type:=boolean

3 default:=false

4 opt:=L

5 opt/long:=max_line_length

6 [sw/wc/show/no_default_args]

7 type:=boolean

8 default:=false

9 override/#0:=/sw/wc/show/lines

10 override/#1:=/sw/wc/show/words

11 override/#2:=/sw/wc/show/chars

12 override/#3:=/sw/wc/show/bytes

13 override/#4:=/sw/wc/show/max_line_length

As input of the wc tool, we used a LATEX file of 32 kilobyte size. We facilitated Callgrind
3.7.0 to profile the whole application [227].

7.2.2 Result

Figure 7.9 shows the growth in execution time depending on the number of override
properties. In the figure already for 0 properties override, the overhead for the backend
is 1.8 times higher, and then it grows 22 % faster [227].

For Figure 7.10, we grouped the counted instructions of the wc application into [227]:

process: the main functionality of the application. The processing of the characters in
the LATEX file dominates with 64 % of the counted instructions.

kdb.open: the bootstrapping as explained in Section 3.2.2. It takes about 17 %, mainly
due to configuration file parsing. The configuration file parser in use is about 12
times slower than the word counter.

kdb.get: the parsing of the application’s configuration file. It costs about 11 % of overall
cycles, also mainly due to configuration file parsing.

lookup: the base costs of the lookup without property override.
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Figure 7.9: Lookup time in backend and frontend implementation variant. We use a
linear scale [227].
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Figure 7.10: Overhead of an elektrified application [227].
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overhead: the additional costs of the lookup if links are present in the specification.
Without any links, only 9 instead of 27 cascading lookups are needed. In total, the
overhead due to links of the application is 5 % in this application.

7.2.3 Discussion

In microbenchmarks resolving links the frontend variant is clearly faster. In whole ap-
plications, however, the difference is minimal. The overhead might be caused by other
factors, such as the parsing time of the additional configuration specification, and not
only by the lookup itself. We answer RQ 8.2:

RQ 8.2. What are the considerations to implement a feature in the frontends versus in
the backends?

Finding.

1. For the benchmark we needed to turn off frontend caches to measure differences.
Without caches, the overhead for the backend is 1.8 times higher and grows 22 %
faster [227].

2. Even in an application that excessively uses links, the overhead of having the link
properties present, is only 5 %.

Implication. Differences in overhead are little, at least for the ksLookup algorithm.
Thus features, such as links, shall be implemented in the backend.

7.3 Overhead of Modular Abstractions

It is well-known that modular abstractions usually come with a price tag: overhead. In
this section we benchmark the vertical and horizontal modular abstraction as introduced
in Section 5.3, answering RQ 8.3:

RQ 8.3. What is the overhead of Elektra’s modular abstractions?

7.3.1 Method

We benchmarked SpecElektra on the EliteBook as described on Section 7.1.1 with the
operating system Debian GNU/Linux Wheezy 8.2 amd64. We employed the compiler
GCC 4.9.2 with the compiler option -O2 [230]. The benchmark setups are described in
the individual sub-sections.
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7.3.2 Vertical Modularity

Method

To evaluate the overhead of vertical modularity, we increase the number of present
mountpoints for an application. With zero mountpoints, Elektra serializes the key set
into the default mountpoint. For more mountpoints, we use the property mountpoint.

Example 7.3. With three mountpoints, we have the following specification [230]:

1 [benchmark/0]

2 mountpoint:=/tmp/file0

3 [benchmark/1]

4 mountpoint:=/tmp/file1

5 [benchmark/2]

6 mountpoint:=/tmp/file2

Result
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Figure 7.11: Access time using 1,000 keys with 100,000 iterations. On the x-axis we
increase the number of mountpoints [230].
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Figure 7.11 shows that the execution time for nine mountpoints is about 28 % higher
compared to the execution time with zero mountpoints.

7.3.3 Horizontal Modularity

Method

To measure the overhead of horizontal modularity, we implemented a plugin called
iterate. It searches all keys for the property iterate. The plugin iterate sim-
ulates an action required by most plugins in Elektra: It investigates which action is
required by which key. In the benchmark, we increase the number of plugins present in
one mountpoint. Then we use gettimeofday to measure how long it takes to parse
and serialize the configuration files, with the plugins present.

Example 7.4. In the benchmark with three plugins, we have the following configuration
specification [230]:3

1 [benchmark]

2 mountpoint:=/tmp/file

3 infos/needs:=iterate#0 iterate#1 iterate#2

Result

We were not able to measure any overhead by adding more plugins. When increasing
the number of keys, we only increased the parsing time. The time spent in the plugin
iterate was too little using our measurement method [230].

7.3.4 Discussion

From Figure 7.11 we conclude the answer to RQ 8.3:

RQ 8.3. What is the overhead of Elektra’s modular abstractions?

Finding.

1. Vertical modularity, i. e., applications accessing the configuration files of each other,
has run-time overhead correlating linearly with the number of used mountpoints.

3The array index at the end of the plugin name enables multiple instantiations of the same plugin.
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2. The run-time overhead of horizontal modularity, i. e., plugins executed during con-
figuration access, is negligible.

Implication. The overhead of SpecElektra does not give reasons to avoid modularity.
Concerning performance, every feature shall be implemented as separate plugin and every
application shall use its own configuration file [230].

7.4 Context Awareness without Source-code Modification

We practically apply our tool in large real-world applications and a systematic software-
engineering process described in Section 5.4.4 to answer RQ 8.4:

RQ 8.4. What are the characteristics of a system in which context-unaware software
was made more context aware without any modifications in the source code?

To answer the overall question, in each of the sub-sections, we respond to one of the
sub-questions:

RQ 8.4.1. How many getenv invocations can be exploited to improve context aware-
ness without any modifications in the source code?

RQ 8.4.2. How can we practically make applications more context aware without any
modifications in the source code?

RQ 8.4.3. What overhead occurs in applications intercepted by Elektra?

RQ 8.4.4. What is the performance implication that occurs on context changes?

7.4.1 Method

For this evaluation, we chose the same 16 popular systems in the same versions as
selected in Table 2.1. We investigated all of these applications but here we mainly report
on browsers. Reports of other applications are described in earlier work [232, 234], with
similar results.

We used Debian GNU/Linux Jessie 8.1 for our evaluation. To enable the interception
of Elektra globally, we used /etc/ld.so.preload. This way, Elektra’s getenv
is preferred to the system’s getenv implementation. The benchmarks were executed
on the EliteBook, as described in Section 7.1.1. Overhead is measured using Valgrind
by executing applications with and without Elektra [232]. Individual methods are
described in the respective sub-sections.
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Threats to Validity

To mitigate measurement problems we cross-checked with two profiling tools: We used
Valgrind Callgrind and Linux Perf.

The benchmarks are conducted comparatively with the system’s libc. We compared
with getenv of the Eglibc 2.19 implementation. Results may vary with other libc
implementations [234].

The benchmarks yield different results depending on the used configuration file formats
and even depending on the size of the used configuration files. To mitigate this problem,
we took special care that our setup is realistic. We mounted 8 different configuration
files and especially chose slow storage plugins. It should be straightforward to repeat our
benchmarks measuring even less overhead than reported by us [232].

Many alternative configuration access APIs exist, but none of them is standardized and
ubiquitous. We are positive that the results are not specific to getenv but can be
reproduced for other configuration access APIs as well. Other configuration access APIs
have the same purpose and only differ in how to use them [232].

We added logging to count the number of getenv occurrences. Extensive logging can
influence a system adversely. To mitigate this problem, we reran all tests with deac-
tivated logging [232].

We did not consider applications that already were implemented with context awareness in
mind. Thus we need to exclude such applications from our claims and cannot draw general
conclusions for context-aware applications. Nevertheless, our study unveils important
insights about context-aware configuration, particularly for FLOSS [232].

7.4.2 RQ 8.4.1: Unanticipated Context Awareness

In Section 2.3, we already demonstrated that the use of getenv is pervasive, even after
startup. Here we validate how many getenv invocations are intercepted and controlled
at run-time by Elektra. We show that changes in the context—and hence in the
variables returned by getenv—have an influence on the behavior of the application [232],
answering RQ 8.4.1:

RQ 8.4.1. How many getenv invocations can be exploited to improve context aware-
ness without any modifications in the source code?
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Method

First we launched the applications, used the menus, and clicked on buttons of the user
interface. While doing so, we traced every getenv invocation with its parameters. To
check if getenv invocations are context aware, we changed the return values of getenv
while the application was still executing. After repeating the user-interaction, we checked
for visual differences to know if the getenv invocation influenced behavior [234].

The run-time analysis considers calls to getenv throughout the stack by all participating
libraries, complementing our earlier source code analysis in Section 2.3. We aim to find
how often changed return values of getenv invocations in the whole stack actually
modify the behavior of 5 different browsers [234].

For some of the settings (≥ in Table 7.1), we lacked the resources to investigate them
in detail, even though further settings are likely context aware. The effort to determine
context awareness of a single setting sometimes is immense. For example, some configura-
tion settings need installations of servers which use out-dated certificates. Others require
buying CPUs implementing different accelerations for cryptographic algorithms.

Result

Application getenv
all

all
uniq

later
uniq

later
config

context
aware

Chromium 2,723 1,056 73 ≥ 24 ≥ 1
Curl 87 14 9 6 6
Firefox 8,185 273 210 118 ≥ 15
Lynx 1,428 45 23 19 16
Wget 13 7 1 1 1

Table 7.1: Achieved context awareness in software without source code modifications [234].

Table 7.1 has the following columns: In the first column getenv all, we show how
often the browsers called getenv (in total). The next column all uniq considers the
number of getenv invocations with unique parameters. The column later uniq exclu-
sively displays getenv invocations with unique parameters and only after startup. The
next column later config shows good candidates for context awareness: They are not
related to debugging, testing, and similar. The last column context aware presents can-
didates that are able to successfully modify behavior at run-time without reloading [234].
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Table 7.1 presents the number of getenv invocations from applications started on
a freshly installed Debian GNU/Linux system. The number of invocations varies not
only between applications but it depends heavily on the system it runs on, for exam-
ple, the installed software. On other machines, we detected several times more unique
getenv invocations for Firefox [234]. The upper bound is not necessarily the number of
getenv invocations found in the source code analysis because libraries call getenv, too.

To give an example, let us walk through the behavior of all browsers for the environ-
ment variable http_proxy. Lynx requests http_proxy via getenv before trying
to fetch content. We can return proxies suitable for the network to seamlessly display
every page without proxy errors. Wget also requests http_proxy for every recursive
download. Curl adds even more fine-grained control: 7 additional environment vari-
ables allow us to distinguish protocols. Firefox rereads http_proxy for every page,
except when they are already in cache. Chromium is the only browser that does not
query http_proxy [232]. Instead it rereads many other environment variables such as
GOOGLE_API_KEY after start-up. In Chromium, we only found PRINTER_LIST to be
exploitable for flawless context awareness.

In rare situations, context awareness leads to wrong behavior. In these situations, de-
velopers required getenv invocations to keep returning the same values. For example,
the environment variable CC determines which C compiler is used. With Elektra, the
environment variable CC can be changed during the compilation of software [230]. Be-
cause not all compilers and linkers are completely compatible, unexpected switching in
the middle of the process can lead to compilation and linker errors.

Discussion

We answer RQ 8.4.1:

RQ 8.4.1. How many getenv invocations can be exploited to improve context aware-
ness without any modifications in the source code?

Finding.

1. In each of the 16 applications, user interactions caused getenv invocations. They
were often useful to influence behavior at run-time. For Lynx even 42 % of the
getenv invocations improve context awareness. Thus the interception is suitable
to improve context awareness without changes in the source code.
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2. In 4 out of 5 browsers, Elektra enables seamless context-aware proxy settings
with getenv [234].

3. Limitations include that some getenv invocations do not allow us to produce
visible impact. Context changes can lead to incorrect behavior in rare cases [232].

Implication. Elektra increases the context awareness for our evaluated applications.
Specific configuration settings were even flawlessly adapted to the context.

7.4.3 RQ 8.4.2: Case Study

Here we show that intercepting applications without source code modifications is not
only feasible but practical, answering the research question:

RQ 8.4.2. How can we practically make applications more context aware without any
modifications in the source code?

Method

First, we conducted the entire context-oriented software engineering process as described
in Section 5.4.4. As software without source code modifications we chose Firefox. When
changing workplaces, Firefox shall always pick [234]

1. the correct proxy, and

2. a nearby printer.

Second, we looked at the open interception using Firefox, investigating if all configuration
settings can be made context aware.

For both steps we measured the time.

Result

Within a day we conducted the process that Firefox fully-automatically selected nearby
printers and proxies. Updates in the user interface happened immediately on network
changes, for example, available printers are even modified while the printer dialog is open.

We utilized one-line hooks in the /etc/NetworkManager scripts to implement the con-
text sensor [234]. Then we specified http_proxy and PRINTER_LIST as environment
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variables of interest (as already depicted in Section 5.4.4) with configuration settings
like:

1 http_proxy/wlan/home=proxy.example.org

2 printer/wlan/home=laserprinter

Elektra allows us to intercept open to return handles to dynamically serialized con-
figuration files. To enable Firefox to reparse its configuration files, we needed 9 hours to
understand the complex, historically grown AutoConfig. Afterwards, we enabled Auto-
Config with small changes exclusively in configuration files. Future users only need to
run a script to do the complete setup. The setup does not involve source code changes
but only changes Firefox’s configuration settings.

In 2 more hours, we implemented a storage plugin for Firefox’s configuration files. Jin
et al. [139] found 1,957 configuration settings to be available in Firefox. With open

interception, we have a mechanism to make all of them context aware.

Discussion

Our approach is by no means limited to Firefox. Instead it permits any configuration
setting from any application to be adapted to context as long:

• Elektra has a binding for the respective configuration access API or has support
for the respective configuration file format (for open interception).

• The application reiterates configuration access or has support to reload its configu-
ration settings.

Applications always repeat all relevant configuration accesses during initialization. It is
implied that every configuration access is context aware by restarting the application.
Thus when invoking external applications, all configuration accesses are by design always
fully context aware.

Different interception techniques sometimes complete each other: While open provides
more settings, the printer integration in Firefox is smoother via getenv interception.

Elektra supports any context, not only mobile workplaces. Other examples include: user-
specific privacy, security, and performance (for example, turning on hardware support).
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Furthermore, context can be derived from user data such as calendars, contacts, and
activities. We did not need to validate the research questions for individual contexts:
Every context sensor collaborates with every application as implied by our complete
separation of context sensors and applications.

We addressed the research question:
RQ 8.4.2. How can we practically make applications more context aware without any
modifications in the source code?

Finding. It is practical to utilize Firefox without source code modifications along with
Elektra in a case study. For retrofitting context awareness in the context of flexible
workplaces, we required only three actions completed within a day:

1. we specified contextual values,

2. we created configuration settings for each workplace, and

3. we implemented context sensors to switch layers.

In case of Firefox, run-time serialization of configuration files is more powerful than
getenv interception although the combination of both is even more capable.
Implication. Elektra can be practically applied to large-scale, real-world software for
non-trivial use cases.

7.4.4 RQ 8.4.3: Overhead

In this experiment we want to investigate the overhead of context changes using Elektra
by answering RQ 8.4.3:
RQ 8.4.3. What overhead occurs in applications intercepted by Elektra?

Method

We activated Elektra’s interception technique throughout the whole experiment. To
measure the overhead of context changes, we change the key database during program
execution. This causes Elektra to reparse its configuration file [232].

The setup is as follows: We locally installed the Web server Lighttpd reachable as
localhost. We used Curl to download ten files from this Web server: curl -o
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"#1 http://localhost/test/[1-10]". The files have sizes of 1 megabyte to 10
megabytes, respectively [232]. The file sizes were chosen to be substantially larger than
any involved configuration file. Otherwise, the overhead caused by parsing of the config-
uration files dominates.

We needed to take care that our experiment did not influence the control flow of the
application. For example, if we modify the no_proxy variable, searching for proxy is
skipped and the performance improves unwantedly. Thus instead, we changed COLUMNS,
which is requested during every download but is unrelated to the download itself [232].

We ran three experiments and let Valgrind count the instructions for each experiment [232]:

1. The downloading of the ten files with Elektra’s interception active.

2. The downloading of the ten files with Elektra’s polling of changes in the con-
figuration files (see Section 5.4.3 for different techniques of how to handle context
changes). In this case, Elektra tries to detect changes in the key database, al-
though they do not happen in the second experiment.

3. The downloading of the ten files with an actual change in the key database. Here
we modified the key COLUMNS in the key database in the middle of the downloads.
This causes Elektra to reparse configuration files and return a new value for the
next getenv("COLUMNS").

Result

The results of the three experiments is as follows [232]:

1. Without any polling or reloading of the key database, Curl needed 83,786,947
instructions.

2. With polling of configuration files in a rate of not more than every millisecond, the
configuration was retrieved 91 times instead of 4 times. This caused Valgrind to
count 91,569,790 instructions, i. e., an overhead of 9.3 %.

3. When changing COLUMNS in the middle of the downloads, Curl executed 95,248,722
instructions. This is again an overhead of ∼ 4 % [232].
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Discussion

We described a small part of all experiments measuring performance and overhead [232,
234]. The experiment above confirms those other experiments. For example, we fully
recompiled the source code of Elektra while interception was activated. Although the
compilation spawned 6847 processes4 only 14 % overhead occurred [232].

We answer the question:
RQ 8.4.3. What overhead occurs in applications intercepted by Elektra?

Finding.

1. In applications that work with files smaller than the involved configuration files,
overhead dominates. In intense but realistic scenarios, Elektra adds run-time
overhead up to 14 % [232].

2. Interception with polling of configuration files adds about 10 % overhead.

3. With changes in the key database the run-time overhead increases again by ∼ 4 %
in a realistic HTTP-proxy transition.

7.4.5 RQ 8.4.4: Performance: Layer Switches

In this section we answer RQ 8.4.4:
RQ 8.4.4. What is the performance implication that occurs on context changes?

Method

To evaluate the performance, we benchmarked different browsers during a proxy tran-
sition on the EliteBook as already introduced in Section 7.1.1 [234]. We measured the
number of simulated CPU instructions with Valgrind’s tool Callgrind and cross-checked
with Linux Perf. We summarize the inclusive costs, i. e., costs of the getenv invocation in-
cluding every callee. Because Valgrind simulates a CPU, we get deterministic results [234].

We conducted three experiments with Lynx and one experiment with Firefox. We profiled
Lynx because it is implemented leanly and thus has negligible startup-times. Such a
minimalist implementation enables more precise exploration of the ramifications the
context changes have [234].

4Each of which parsed configuration settings and specifications.
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1. First we launched Lynx without Elektra and visited two links by typing them in
the address bar.

2. Then we turned on Elektra interception and directly modified the proxy before
opening the second link.

3. In the next experiment, again with Elektra, we first opened a Web page, then
changed the context via layers, and finally opened another Web page. We used a
contextual value with two layers: network and interface.

4. The comparison with Firefox turned out to be more difficult because it consumes
resources even without any user interaction. The startup-times of Firefox using
Valgrind are nearly two minutes, which made it implausible to measure the relevant
time precisely enough. Therefore, we could not do a comparative analysis by the
total count of instructions with and without Elektra. Instead we estimated the
overhead by analyzing the profile data.

Result

The results of the four benchmarks are [234]:

1. Without context-aware interception, Valgrind counted 92,888,073 instructions (me-
dian of three Valgrind invocations). The getenv invocations used 0.33 % of these
instructions.

2. If we modified env/override/http_proxy directly (not changing layers as it
normally should be done), we counted 114,049,336 instructions (this is about 18.5 %
more instructions than from Benchmark 1) of which getenv uses 24.51 %.

3. If we changed a layer value before opening a second link, the getenv invocations
used 25.27 % of all instructions.

4. Firefox required 20,362,848,539 instructions to start up and to display two Web
pages. Summing up all costs from the Elektra library results in 68,750,481,
i. e., 0.39 % (maximum value of two measurements). The function g_getenv (a
wrapper of getenv in Firefox) needed 16,614,089 instructions (i. e., 0.08 %) rather
than 22,703 instructions (i. e., 0.00 %) without Elektra.
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Discussion

We respond to RQ 8.4.4:

RQ 8.4.4. What is the performance implication that occurs on context changes?

Finding. In minimalist applications, such as Lynx, Elektra caused 18.5 % to 25.27 %
overhead. For feature-rich applications the overhead was below 1 %.

The performance difference between directly modifying the configuration values and chang-
ing layer values is minimal: It is less than one percentage point more overhead in
getenv’s instructions.

Implication. Developers shall prefer to facilitate contextual values and shall change
configuration values indirectly via layers.

7.4.6 Discussion

We answer RQ 8.4 about intercepting applications without source code modifications:

RQ 8.4. What are the characteristics of a system in which context-unaware software
was made more context aware without any modifications in the source code?

Finding. It is practical and feasible to intercept configuration access API invocations
from applications without source code modifications.

Even for large-scale legacy applications, where rewriting the application for more context
awareness would be an immense effort, adding context awareness with Elektra has little
time effort (hours to days) and overhead (∼ 1 % for feature-rich applications).





CHAPTER 8
Related Work

begin virus
I am a book virus! Copy me into your book to help me spread!
end.

In this chapter we compare our work with others. In Section 8.1 we look into other
systems providing configuration access. In this book, we introduced context awareness
and related new programming techniques, related work of which we discuss in Section 8.2
and Section 8.3. In Section 8.4 we focus on methodology in other work. We aim to answer
the question:

RQ 9. Why does related work not solve the configuration integration problem?

8.1 Configuration

Systems that provide access to configuration are naturally related to Elektra. We found,
however, that only in rare exceptions the abstractions are similar to the abstractions
in Elektra. Thus most systems providing configuration access are not as similar to
Elektra as one might think. In this section we discuss different approaches to various
systems and describe the differences in their abstractions.

289
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8.1.1 Configuration Libraries

In general, other configuration libraries differ from Elektra by having no or little exter-
nal specifications. They require applications to hard code their configuration access, which
prevents introspection, external validation, adapted tooling, and other wanted properties.

Apache Commons Configuration [95, 199] abstracts over different configuration sources
using the factory pattern [71, 98]. Different from Elektra, developers need to hard code
which sources and validations they want to use. Thus it does not enable introspection.
Furthermore, it is tightly integrated in Java technology. In the Version 2.1 (released on
20th August, 2016), Apache Commons Configuration

• requires applications to completely specify which configuration files in which syntax
shall be used, causing the configuration integration problem,

• does not support any form of external specifications except for those that are tied
to specific configuration file formats such as XML,

• does not provide any context awareness, and

• introduces a complex multi-threading model.

Nosál and Porubän [199, 200] extended the ideas of Apache Commons Configuration.
Their work enables users to integrate source code annotations into a coherent system
abstracting configuration sources. Their meta-configuration is similar to bootstrapping
in Elektra. Different from Elektra, the solution is tightly coupled to Java technology
and neither has support for validation nor for context awareness.

Roll [250] introduced a way to generate CORBA initialization code from XML specifica-
tions. Her idea was to avoid hard-coded initialization code. She had goals similar to our
high-level API but she focused on CORBA and did not support context awareness.

Denisov [72] summarized different requirements for configuration libraries. Unfortunately,
the outlined configuration library was not fully implemented. No empirical evidence
was given for these requirements. Nevertheless, our empirical results confirm most of
these requirements. From our data, however, we cannot find argumentation for two of
his requirements:

• “support for complex data structures” : We did not find any case of complex data
structures in the configuration settings of the software we analyzed. Complex
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data structures that refer to other elements can easily be avoided by improved
lookup that resolve links in data structures. We argue that objects shall not be
directly serialized into configuration files, but instead configuration settings shall
be designed from a system administrator’s perspective. We agree that collections
shall be supported but we would not say that they are “complex data structures”.

• We did not see why “support of cloud services” requires more than “support for
different configuration sources/persistent backing stores” for a configuration library.
Non-file-based storage is needed for many systems and its need is not limited
to cloud services. Elektra works with network file systems, and can directly
request configuration files from URLs via Curl resolvers. From the survey we cannot
confirm that there are additional requirements for cloud-based systems: Only a
single person of the survey mentioned “cloud-init based configuration” (without
giving new requirements) although several OpenStack developers participated in
the questionnaire. We agree that cloud-based setups can be different in aspects
related to configuration management.

8.1.2 Configuration File Parsing

One of the main difficulties in Elektra is the support of the many configuration file
formats. A significant portion of the development time went into the many parsers and
serializers. We considered different ways of how to implement configuration file parsers
efficiently. Here we mention some techniques of parsing configuration files, which got
attention from the research community.

Lenses promise to solve the problem of having separate implementations of parsers
and serializers [41, 160, 177]: A single specification, i. e., a lens, is used to parse and
serialize configuration files, leading to trouble-free round-tripping properties. We found
that most of the development time is invested in better abstracting the configuration
settings from the concrete syntax; and not in having separate source code for parsers and
serializers. Augeas [177] is an implementation of these ideas focusing on configuration
file manipulation. We already discussed its properties in Section 1.1.1. We found Augeas
useful because of its preservation of all white spaces and comments. It is well suited to
access legacy formats such as sshd or ntp that do not provide parsing libraries. Thus
we integrated Augeas in Elektra.

The PADS language [91–93] tackles the more general problem of processing ad hoc data
sources. From a type specification of ad hoc data, parsers and serializers are generated.



292 CHAPTER 8. RELATED WORK

Different from Elektra, PADS has fewer assumptions on how the data looks like. The
data might even contain errors, and PADS can still work with them. We find the (error)
model of PADS elegant, but a potential adaptation to Elektra is future work.

8.1.3 Validation

Validation languages are a wide topic we cannot fully cover here. Hartmann [122] evalu-
ated requirements of different stakeholders for data applications and published 81 types
of constraints. We interpret the many types of constraints as confirmation that Elektra
needs to be extensible to capture any types of constraints.

Murata et al. [193] created a taxonomy of XML schema languages using formal lan-
guage theory. XML schemas excel most of Elektra’s validation strategies in terms
of expressibility. Elektra, however, allows users to combine many strategies, which is
difficult using XML schemas. It would require to solve the problem of fully-automatic
schema matching, which is impossible in general [28, 76, 240]. For example, if we need
to check integrity constraints, we use Schematron, and miss the features of XDuce [135].
Changing from one schema to the other often means rewriting the whole schema.1 One
of the rare exceptions within XML is RELAX NG [56], which allows users at least to
combine different data types. In Elektra we easily combine validation strategies. If a
feature is missing, we extend the configuration specification language with new plugins.

XML technology is not known to be ideally suitable for describing key-value pairs nor
configuration settings [43]. Furthermore, it is easily too verbose to be written by hand [42].
Thus often syntactic alternatives are proposed, which are less verbose and can be trans-
formed with a single specification [42]. As another example, RELAX NG supports an
XML syntax and a compact syntax [56].

8.1.4 Links

XML technologies have a variety of ways to express links. They are not specified to be
used outside of XML technologies. Configuration files, however, are often not in XML
syntax. XPointer [109] permits identifying XML fragments. XInclude [181] provides an
element “fallback” similar to the property default as described in this book. For the
other link properties we described no similar concepts are provided [227].

1Only for the most popular XML schemas conversion tools exist, for example, Trang or the Multi-
Schema Validator.
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Configuration links were proposed and formally developed by Reiser [243, 245]. They
differ from our fallback and override links because they [227]

• exclusively refer within specifications, while Elektra’s links refer to configuration
settings and specifications,

• are interpreted when serializing configuration settings, while Elektra’s links are
evaluated at run-time,

• adopt propositional logic to identify selections, and

• seem to lack support for transformation rules.

8.1.5 Misconfiguration

There is a large body of research for fixing misconfigurations that already became man-
ifest [21, 302, 307, 309, 310]. On contrary, Elektra wants to avoid that misconfigu-
rations occur in the first place. Taking more context into account avoids some kinds
of misconfigurations.

Nagaraja et al. [195] tried to avoid having a completely duplicated production envi-
ronment and wanted to nevertheless catch misconfigurations degrading performance. In
an extensive user study with system administrators they observed 42 misconfigurations.
They distinguished between local and global misconfigurations. Both kinds of miscon-
figurations involve context at different levels. While some misconfigurations would be
caught by trivial SpecElektra validations, other operation errors are out of scope for
Elektra (for example restarting services). We are positive, however, that the combi-
nation of modern configuration management tools together with Elektra catches all
errors described in the paper [195].2

ConfErr [154] is able to localize misconfiguration by trying to inject possibly invalid
configuration settings. ConfErr does not use a configuration specification nor does it
analyze the source code, which puts severe limitations on its effectiveness. ConfErr could
benefit from guidance of SpecElektra to explore border cases in a more targeted way.

AutoBash [272] and ConfAid [21] have similar goals as Elektra. Unlike Elektra,
predicates that test the application must be available on the productive system. In

2 Assuming that the workflows are adapted to a more modern style coherent with how the configuration
management tools work. For example, you would not manually migrate database servers in modern,
redundant, infrastructure-as-a-code systems.
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Elektra, problems are ruled out by the specification, so that they cannot occur in the
productive system.

Spex [304] infers parts of the configuration specification by analyzing the source code
of applications. Spex’s approach is complementing Elektra in the sense that it can be
used for initial construction of the specification for large existing applications. Spex is
not suitable to be used for development and generation of end-user documentation.

Xu et al. [305] questioned which of the many configuration settings are used in practice.
They argue that users are confused by too many settings. We fully agree and are positive
that SpecElektra helps by automatically deducing many settings from context. These
augmented settings can be removed from user guides. Advanced users still have the possi-
bility to override such configuration settings, addressing our findings in the survey [234].

Jin et al. [139] portrayed obstacles in configuring real-world systems. The authors calcu-
lated that Firefox has 1,957 settings and guessed that they overlooked only a small part
of settings. In our study we show, however, that the configuration access API getenv
drastically increases the total amount of available configuration settings [234].

Nadi et al. [194], Rabkin and Katz [238] extracted program configuration specifications
from source code. They confirm that, even though many specifications are extracted,
we need additional external knowledge. We show in our work how context awareness
contributes as external knowledge [232].

PCheck [306] aims at validating configuration settings early. The tool searches for vali-
dation checks within the source code and moves them into start-up code. Different from
Elektra, it requires validation code to be present in the application. But as unveiled in
our study, the present validation specifications are often incomplete because of missing
context information.

Another idea is to detect inadequate error messages for misconfiguration [311]. Elektra
systematically avoids some problems in error messages by automatically adding important
information, such as the affected configuration file, the mountpoint, etc.

Other related work assumes that only a single programming language is applied. Rabkin
and Katz [238] describe how configuration settings are extracted statically. Zhang and
Ernst [309] present a tool that finds wrongly configured settings in a fully automated
way. Rabkin and Katz [237] precompute possible misconfigurations diagnosis. In contrast,
Elektra has no assumption on the choice of programming languages.
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Xu and Zhou [303] surveyed different ways of how to improve on misconfiguration. At
that time, the idea of context-aware configuration was in an early stage [235]. Thus
context-aware configuration was not part of this survey.

8.1.6 Configuration Management

Configuration management is related to the topic of the book, but configuration manage-
ment is situated one level higher. While configuration management is concerned about
the content of configuration settings, Elektra is concerned about how applications
access these configuration settings. In Elektra both configuration settings and speci-
fications are well suited to be managed via configuration management tools. This gives
an important advantage because configuration management tools struggle to work with
the many ways to access configuration settings [45].

Configuration management includes managing configuration settings for all nodes in a
network [68]. In this context, directly changing configuration files is regarded as anti-
pattern. For smart phones and other customizable devices users often desire to directly
reconfigure their personal devices. SpecElektra allows personal customization, while
still enforcing the configuration specification managed by system administrators [230].
Configuration management tools do not support to locally validate configuration. Mis-
configuration easily reaches the systems, in particular if the consistency problems are
related to context. Elektra mitigates these problems by local, context-aware validation.

Zdun [308] argues that the concern “behavioral composition and configuration” shall be
treated as a first-class entity. This approach goes a different direction than Elektra. It
values composition, reusability and modularity of source code more than the resulting
system administrators’ interfaces [227].

Gruber [110] used ontologies for sharing data. He aimed at minimal ontological com-
mitment, i. e., to tolerate different forms of representation. For example, different date
formats such as “1993” or “March 1993” shall be accepted. In Elektra plugins make
sure that different formats are canonicalized so that frontends receive expected values.
Gruber [110] facilitated references similar to Elektra’s key names [227].

Syrjänen [273] formalized the dependences of the Debian Package management system
using the stable model semantics. The goal was to get better diagnostic information for
error messages.
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8.2 Context Awareness

In this section we discuss related work on context awareness.

8.2.1 Context-oriented Programming

Context-oriented programming plays a role within software engineering [24, 141, 255].
It aims at comprehensible programs being more context aware. As extension, Elektra
adds context awareness without source code modification [232].

Plaice and Mancilla [216] applied a Cartesian approach to context. One of the differences
is the use of an n-dimensional table with lazy computation instead of our one-dimensional
key set with eagerly computed values. While the Cartesian approach is theoretically more
powerful, it has the disadvantage that its contents cannot easily be serialized. However,
efficient serialization is a requirement for working with execution environments [235].

Watanabe and Takeno [295] introduced an actor-based model for cross-context messages.
They improved the receiving of messages in the correct context. Different from them
Elektra works with threads and processes instead of actors [226].

Costanza et al. [61] provided ContextL as an extension to Common Lisp Object System
(CLOS) and relied on its features: dynamic class generation, multiple inheritance, dy-
namically scoped variables, and multiple dispatch. In most programming languages these
features are not available. For example, C++ only supports multiple inheritance from
this set of features [235].

Dynamic aspect weaving, for example, in the Steamloom virtual machine [39], provides
language constructs for the activation of partial program definitions. Different from
Elektra, it requires virtual machines [235].

Kamina et al. [146] proposed a generalized activation mechanism using contexts and
subscribers. Elektra only provides a subset of these generalized activation mechanism.
Their implicit activation, however, can have serious impact on the performance, conflicting
with our performance requirements [231].

Pape et al. [208] used a meta-tracing just-in-time compiler to better cope with non-
standard lookups. This line of research promises to get implicit activation with accept-
able costs. Their work needs just-in-time compilation to work, not available in some of
Elektra’s supported languages.
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Bainomugisha et al. [23] suggested that even currently running code shall be interrupted
and restarted to better fit the viewpoint time of context awareness. This idea nicely fits
into our concept of synchronization points: Elektra’s frontends can be extended to
jump back to the last synchronization point on context changes. Cardozo et al. [51], Taing
et al. [274] instead focused on consistency of unanticipated adaptation of context.

Chiba et al. [54] demonstrated that modularity does not necessarily need syntactic
extensions. Instead they introduced a database and browser for cross-cutting concerns.
The database contains the information which code snippets shall be kept synchronous.
The ideas of the approach can be applied to SpecElektra.

8.2.2 Contextual Values

Asirelli et al. [18], Montangero et al. [191] pioneered contextual values already in 1975.
Similar to the key set in Elektra, they use context-value pairs where all values in all
contexts are stored.

Löwis et al. [290] proposed an updated form of contextual values3 extending on context-
oriented programming. Their layer activation4 forces the developer to explicitly declare
layers. Thus their approach would benefit from having contextual values as layers [290].
Their proposal for implicit layer activations avoids explicit synchronization points at a
high price: They check context on every use of every contextual value [290].

Tanter [275] analyzed the semantics of contextual values in-depth. Different from Elek-
tra, these contextual values need modifications in the Scheme interpreter.

8.2.3 Context-aware Applications

Schilit et al. [258] proposed context-aware computing. They already envisioned automatic
contextual reconfiguration. Since the work of Dey and Abowd [74], the research topic
received more attention.

Most approaches—to make applications more context aware—require modifications in
the source code. To mitigate efforts, context-oriented middleware [13, 103, 111, 125] and
frameworks [239, 299] were introduced. Elektra can be seen a light-weight context-
aware middleware or framework for local configuration settings [232].

3Named context variables in their work.
4They call it binding of contextual values.
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Riva et al. [248] extracted design patterns from context-aware applications. They found
that a hybrid mediator-observer is used in almost all of their surveyed context-oriented
programming systems. Elektra is no exception and uses the observer pattern for thread
synchronization [226].

Alegre et al. [5], Baldauf et al. [24], Jong-yi et al. [141] surveyed the field of context-aware
applications in depth. Mens et al. [186] introduced a taxonomy of approaches to context-
aware applications. As in our work, they found the execution environment as source for
context information. Based on their taxonomy, Elektra shall be classified as follows:

• Elektra does not support behavior missing in the source code. It enables, however,
to switch between existing behavior at run-time as needed by the context.

• Elektra supports both contextual and context features: The decision is up to the
application.

• Elektra uses a one-branch context tree: Without context placeholders contextual
values are non-context-aware configuration settings.

• Elektra supports programmer-declared dependences [231].

Alexandrov et al. [7] uses intercepting of library calls to promote user experience but
with a different goal than Elektra.

Lee et al. [166] proposes a context-aware, deployment-oriented development process
similar to our context-oriented software engineering process. Different from Elektra,
context needs to be known at design time.

Parra et al. [210] argued that context-aware specifications need integration into context-
aware applications using compiler technologies. While this might be a good idea for some
specifications, in general we propose the opposite: Even if many context specifications are
interpreted at run-time, the overhead is little. Additionally, only if context specifications
are evaluated at run-time flexible adaptations for new viewpoints of contexts are possible.

Kamina et al. [145] defined layers as binary information: They are either activated
or deactivated. For location information, for example, we could use inAustria and
inArgentinia as layers. With a high number of locations, however, the number of
layers gets unmanageable. To avoid such high numbers of layers we prefer key-value pairs
for layer information [151]. Then even contextual specifications with few layer names
describe a large set of possible values.



8.3. PROGRAMMING TECHNIQUES 299

8.2.4 Context-aware Web Services

Niu et al. [198] reported on a framework, called WIF4InL, for indoor localization. Similar
to Elektra, it provides an application-neutral API. Niu et al. [198] used layering of
Web-based APIs: Their composite API “allows high-level queries by internally combing
some fundamental API.” [198]. Different from Elektra, only queries regarding locations
are provided. Elektra’s design is different: We would expect the application to not
care about localization details and directly query the configuration settings. For example,
suppose a screen shall automatically change its brightness according to the indoor location.
In WIF4InL, the developer would directly query the API and encode the rules about the
brightness as part of the program. In Elektra, the developer would ask for the current
brightness. Internally, Elektra could use WIF4InL as context sensor to calculate the
correct brightness. While Elektra provides more portability for its applications, using
WIF4InL directly opens more possibilities for behavior where several real-world objects
interact. Furthermore, WIF4InL provides topological and navigational features, for which
Elektra is not the appropriate tool.

Kapitsaki et al. [148] argued that context awareness is an “essential aspect—almost a
requirement—of mobile services”. They propose a context-oriented Web service architec-
ture using the SOAP protocol and build upon work of Keidl and Kemper [153]. They share
with Elektra that their architecture is plugin based and that it supports manipulation
of responses the user gets.

8.3 Programming Techniques

In this section we elaborate on programming techniques similar to programming tech-
niques used in Elektra.

8.3.1 Product Lines

Software product lines [35, 190, 217, 257] investigate configuration settings at design time
using feature models [167]. They aim at manufacturing software products by combining
features. While they share some goals with Elektra, other goals are completely different.
Whereas product lines focus on creating customized products, Elektra targets on
customizing software at run-time and on-demand. Elektra’s specifications can be seen
as variability model, but Elektra has its focus on run-time configuration access for
FLOSS applications. Thus Elektra’s goals are more in line with goals of FLOSS
software, where distributions avoid variants of the same software packages.
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Linux, by using the Kconfig language, can be considered as highly-configurable prod-
uct [211]. Compilation variants of plugins in Elektra work similarly. Berger et al. [33]
compare two variability modeling languages: Kconfig and CDL.

Leite and Penciuc [169] suggested to facilitate ideas from software product line for config-
uration management. They also propose to replace imperative scripts with descriptions
of desired features.

Recent advances in software product lines switched from compile-time to load-time
variability [291]. Mauro et al. [183] built on these dynamic software product lines and
extended them with context awareness. Similar to Elektra, they proposed a single
specification that includes context information. Mauro et al. [183] relied on constraint
solving, an approach that could also be applied as validation plugin within Elektra.

8.3.2 Database Management Systems

Stored procedures [82] are used to validate or transform data but cannot tamper with
some semantics of the database. For example, there are limitations in which way a stored
procedure can reconfigure the database. Furthermore, automatic program modifications
of the stored procedures are challenging.

Elmongui et al. [84] introduced context-aware data management systems. Such query
languages can be on top of Elektra [231].

Grier et al. [107] argued that security of plugins can be enforced if direct access to
the system is restricted. Plugin architectures were also proposed on operating system
level [67].

8.3.3 Meta-level Programming

Umuhoza et al. [284] studied different code generation techniques for mobile develop-
ment. Loques et al. [175] discussed the correspondence between concepts of configuration
and meta-level programming. Aktemur and Kamin [4] compared different techniques to
implement customizable libraries. They did not consider context [231].

Jung et al. [143] facilitated code generation. They target embedded systems with focus on
resource utilization as discussed in Section 7.1.5. Using partial evaluation they removed
Libxml2 dependences to make the resulting binaries fit on their target platform. Different
from Elektra, they assume configuration settings to be static, i. e., neither context
aware nor customizable.
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Österlund and Löwe [204]—using the ideas of Ericsson [86]—presented a way of how pro-
grams, that use conservative locking, can be accelerated. They used run-time knowledge
in order to choose the optimal locking scheme [205]. The frontends of Elektra can
profit from this technique.

8.4 Methodology

Here we describe work that used similar methods or elaborated on methodology we used.

8.4.1 Type systems

Type systems [49, 113, 172, 215, 221–224, 261, 296] allow developers to specify constraints
on data. Configuration values are data, thus configuration specifications can be supported
by type systems.

Gannon [99] conducted the first user research on type systems. The first experiment
was quantitative, with nearly no qualitative aspect. Their work has a subjective tone,
for example, the paper states that these “results come as no surprise”. The next paper
conducting a user study was written ten years later [219]. Again it follows a quantitative
approach, but it puts as goal to not take personal anecdotes as granted. It was still not
mentioned that results might not be universally valid. The work of Daly et al. [65] is one
of the early qualitative papers. Their results focused on the usefulness of error messages.

Hanenberg [116] finally established user research for type systems at a greater scale. The
major contribution was that he doubted some previously well-established opinions about
the positive impact of static type systems. The effort of his study was huge: He developed
two computer languages that were identical with the only exception that one had static
types and the other had not. Even with 49 subjects, of whom each worked over 27 hours,
he could not demonstrate a statistical significant difference. In his experimental setup, he
combined a small application with a larger one. While in the smaller application the static-
typed language yielded disadvantages, this was not the case for the larger application.

The main methodology for type systems is to prove soundness and completeness [215].
SpecElektra currently does not have sound and complete checking of the configuration
specification nor settings. Candidate type systems for Elektra are:

1. More powerful data types, for example, supporting units of measurement [75, 215].

2. Ways to define subtyping between configuration settings and subtrees thereof [215].
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3. Sum types are both self-describing and their tag is one of the simplest form of
metadata. Sum types are the opposite of the subtypes: They allow us to loosen
the strictness of a type. For example, to allow a string to be empty or to contain a
number, we use sum types.

4. Constraint programming [97], for example with Gecode, COIN-OR LP, and Z3.

5. Data schemas, for example, Relax NG schema [56], and XSD [264].

6. Check relations and infer types from relations (type reconstruction) [118, 215].

7. Any combination of the techniques above.

8.4.2 Surveys

Berger et al. [34] and Villela et al. [288] conducted a questionnaire asking about variability
modeling. Their survey targets a different group.

Several studies focused on FLOSS developers. Michlmayr et al. [189] explored quality
problems using interviews. We affirm that documentation often is missing. Barcomb et al.
[25] explored how developers acquire FLOSS skills. Crowston et al. [63] surveyed other
FLOSS development studies.

8.4.3 Human Computer Interaction

Human computer interaction has a broad spectrum of user research methodology, includ-
ing “research through design” [102]. Its goal is to produce knowledge by studying the
process of designing and the interaction of design with users [270]. So design is merely
the means to extend the ability to investigate and acquire new knowledge. Nevertheless,
the main interest of this research is how things can be improved and not how things are.
We agree with Tichy [280], who argued that computer scientists should experiment more.

The similarly called “design science” is a rigorous method used to design and evaluate
information systems in case studies [298]. For software engineering “theory of cases”
was developed [80, 83].

8.4.4 Application Integration

Integration via middleware is a well-established research topic. For example, Paul et al.
[212] introduced the tool interconnection language. It improves the integration of compo-
nents by specifying operational and event interfaces. The tool interconnection language
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compiler generates adapter code, which influences the run-time environment. In the case
study, they used CORBA.

Integration of software engineering tooling is well-researched, too. For example, De-
signSpace [70] integrates development artifacts and their relations. Monto [152] allows
users to integrate different programming language environments into integrated develop-
ment environments.

Enterprise application integration [57] has a completely different focus: It tries to better
integrate support of business processes.

Application integration via configuration settings is a novelty of this book. We could not
find literature that tried to integrate software configuration settings and specifications
by context-aware configuration.





CHAPTER 9
Conclusion and Future Work

We are what we think. All that we are arises with our thoughts. With our
thoughts we make the world.

— Siddhartha Gautama, rendering of Thomas Byrom

Humans are involved in an endless struggle to express themselves. In this book we
described some contributions that help users, system administrators, and developers to
reveal their thoughts related to context-aware configuration. In particular, the framework
Elektra and the modular specification language SpecElektra are a promising way
to specify configuration access for FLOSS systems. We are ready to answer our main
research question for the different stakeholders:

RQ 1. Why is current FLOSS configuration access rarely context aware and how can
we improve on the situation?

Developers had obstacles that they were missing decent frontends with a high level of
abstraction. Thus they hard-coded inflexible and mostly context-unaware configu-
ration accesses. Elektra improves on the problem by the concept of contextual
values as configuration settings. These better frontends enable developers to directly
work with variables that contain context-aware configuration.

System administrators were not empowered to connect configuration settings and
context information. Elektra improves on the configuration integration problem
by globally sharing configuration settings and context information in a key database.

305
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To not lose any modularity, we mount backends and put needed functionality in
plugins. SpecElektra empowers system administrators to improve on configura-
tion validation and context awareness with requirements and context information
encoded as configuration settings.

End users rarely had context awareness in their applications. Instead, they had to
manually change settings of every application. With Elektra, they benefit from
increased context awareness of the configuration settings. We showed that this
even works for applications in which no source code is modified. Furthermore,
Elektra provides user interfaces so that end users can avoid any contact with
configuration files.

We conclude the answer of RQ 1 by walking through the four initial goals. We revisit
contributions to each goal and describe future work. As structure, we use the steps
needed to create and evaluate the modular, system-level, context-oriented configuration
specification language SpecElektra:

• Before we created SpecElektra, we had to understand the requirements and
challenges. We conclude on our challenges in Section 9.1.

• SpecElektra alone would be an incomplete solution if applications misinterpret
configuration settings internally. In Section 9.2, we conclude our efforts to provide
better and safer frontends that avoid missing considerations of context.

• In Section 9.3 we give final remarks about the modularity and efficiency of Spec-
Elektra.

• In Section 9.4 we summarize how we achieve context-aware configuration for both
elektrified applications and applications without source code modifications.

9.1 Challenges

In the beginning of our work we found that state-of-the-art literature only reported
the phenomenon misconfiguration but hardly elaborated on its causes. Thus we had
to unveil these causes ourselves. From the causes, we derived requirements aiming at
Goal Requirement:
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Goal (Requirement). A goal of this book is to unveil requirements by empirically
analyzing how applications access configuration settings and why developers programmed
it that way.

To accomplish the goal, we addressed the following research question:
RQ 3. Why do FLOSS applications lack context awareness and configuration validation
for configuration settings and what are the challenges in providing them?

The answer is that validations and context information is encoded in the applications in
a way so that they are [233]

• not reusable, requiring error-prone duplication,

• not introspectable by external tools, and

• incapable of using knowledge of the system and its context.

We supported our claims by an experience report, a questionnaire, and a large-scale source
code analysis [233]. We framed the disclosed challenges as configuration integration prob-
lem: Applications are currently unable to access configuration settings and specifications
present in the system.

In this book, we collected the first empirically-founded requirements for configuration
access. Some requirements fundamentally differ from all current implementations. In
particular, LibElektra is the first implementation with external configuration specifi-
cations and consistent introspection. These properties are, however, essential to mitigate
the configuration integration problem that was found important by 96 % of 173 survey
participants.

Furthermore, we learned that current frontends are already used as if they were context
aware, although they are not. Based on that, we split our efforts into two paths for
possible improvements on context-aware configuration:

• By providing novel frontends, we mitigate problems for newly-written software.

• By reimplementing current frontends, we mitigate problems for legacy software.

Future Work: We plan to conduct studies on misconfiguration with systems that use
Elektra. In particular, similar studies as discussed in Chapter 2 and Section 6.4.4
should be repeated. This way, new ways of misconfiguration can be unveiled and the
effectiveness of Elektra can be improved.



308 CHAPTER 9. CONCLUSION AND FUTURE WORK

9.2 Context-oriented Programming

We would not achieve much if developers continue to access configuration settings in
error-prone, non-unifiable ways. Thus we first looked at Goal Frontend:

Goal (Frontend). We aim at a context-aware, type-safe frontend that mitigates prob-
lems unveiled before. The effort to let applications participate with this run-time system
shall be kept at a minimum.

We demonstrated the possibility of supporting contextual values without overhead on
reading them—unconcerned of the number of active layers. A declarative specification
of contextual values diminishes the burden of implementing type-safe contextual classes
implementing contextual values and layers. Additionally, we avoid superfluous cache
updates on context changes by specifying dependences between values and contexts [235].

Specifications in combination with active layers yield unique names for all contextual
values in each context. These names allow introspection and improve debugging support
of contextual values [235].

Ubiquitous Computing: In this book, we improved context awareness and customizations
without compromise on efficiency in multi-threaded applications. Developers can choose
whether context changes are across all threads or target specific thread(s) [226].

We demonstrated that our approach improves on multi-core-processor support for context-
aware ubiquitous computing. Elektra facilitates algorithms to read contextual values
concurrently with full control with respect to performance [226].

In benchmarks we demonstrated that even frequent context changes do not slow down
the page replies of a Web server application. Only on a single-core processor we noticed
decay if using a high number of context changes. On a multi-core processor we needed
an unrealistic-long global lock to reduce the number of replies per seconds [226].

Our contributions for ubiquitous computing are summarized as follows [226]:

• Elektra enables developers to facilitate contextual values in embedded, multi-
threaded applications.

• In a case study, we reported on our experience on developing a Web server running
on embedded hardware.

• We analyzed the performance in single-core and multi-core setups.
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These contributions are significant because in other implementations, context awareness
had a much larger performance impact unsuitable for embedded systems [226].

Another important aspect of our tool is the build-in persistence of the execution envi-
ronment. In our approach, command-line options and configuration files initialize all
contextual values for every known context. Elektra enables serializing users’ customiza-
tions to configuration files.

Mobile Computing: In this book we demonstrated how contextual values are used for
layer activation. We considered several limitations and benefits [231]:

• Layer activations automatically consider context.

• Applications are enabled to synchronize layers activations.

• Applications share context information across programming languages.

The approach is practical and relevant to mobile development. It simplifies accounting
for the current context. Furthermore, it supports individual customization and sharing
context between applications. Even end users can redefine configuration settings in a
specific context [231].

In benchmarks, we demonstrated that activating contextual values does not add much cost
to layer activations. Elektra also supports synchronization with the key database to
enable sharing of contextual values between applications. A real-world Web server bench-
mark illustrates that only high synchronization rates with the key database, such as every
few milliseconds, influence the number of served requests on a multi-core computer [231].

Our contributions in mobile computing are summarized as follows [231]:

• With Elektra, we introduced a tool with a unique combination of performance,
context awareness, and customization.

• Elektra empowers developers to facilitate contextual values in multi-threaded
and multi-process applications.

• Contextual values are shareable across applications.

• Elektra currently supports development, also for embedded systems, in C++,
Python, Haskell, Lua, Shell, Ruby, and Java.
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• In a case study we reported our experience in embedded development. We analyzed
the performance in microbenchmarks and using a Web server.

Future Work: Many further optimization techniques are open to be explored. For exam-
ple, layer switching can be accelerated by using an array per contextual value. It might
require compression techniques to keep the size of arrays acceptable.

9.3 Modular Specification Language SpecElektra

We conclude on Goal Abstraction:

Goal (Abstraction). We create an abstraction by designing the configuration specifi-
cation language SpecElektra. This abstraction shall enable users to reduce effects of
the configuration integration problem by unifying configuration access, simplifying config-
uration validation, and enabling context awareness.

SpecElektra is in a sweet spot of configuration specification languages that enables
modularity: In SpecElektra, modularity supports developers to reach system-oriented
and context-oriented requirements. The modularization in the specification language
supports applications to include their specific validation strategies. This way we reach
an improvement of the validation precision without introducing a complex configura-
tion specification language. SpecElektra enables us to externalize many cross-cutting
concerns related to configuration access [230].

We implemented most parts of SpecElektra in backends so that specifications are
automatically enforced for all applications. Bugs are easily fixed for all applications at a
single place. We took care to keep the backends extensible by implementing all features
as plugins. We presented an algorithm that automatically assembles plugins using the
configuration specifications and the plugins’ contracts.

In benchmarks we showed that overhead introduced by modular abstraction is negligible.
All current features, except of the cache for contextual values, can be implemented within
plugins in the backends. Even better, the impact of a higher number of plugins is irrelevant
compared to overall costs [230].

The benefits of SpecElektra are thus that it [230]

• opens up a unified way to access configuration settings,

• enables documentation, validation, and even calculations of configuration settings,
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• avoids restrictions for plugins,

• introduces plugins with run-time and compile-time variability, and

• enables us to introduce high-level configuration settings from which Elektra
derives suitable context-aware configurations.

Future Work: There is some doubt that POSIX abstractions cover the needs of ap-
plications [20]. We agree and think that configuration access is an important need of
applications. In further work, Elektra’s API, KDB, and its abstractions should be
reimplemented in different programming languages. For implementations of Elektra’s
API, compliance levels should be defined.

Further research is needed to decide which type systems fit best for such a configuration
specification language. Several type systems, as described in Section 8.4.1, can be imple-
mented and compared. We also leave type-safe upgrading of configuration specifications
as further work.

9.4 Context awareness

We contributed to Goal Context:

Goal (Context). We aim at a run-time system that automatically chooses the best
suitable configuration settings with regard to the context. We want to enable users to
consistently manipulate and introspect which configuration settings an application receives.
Making changes in configuration settings shall be futz-free.

In this book, we claimed that applications can be enriched to be more context aware
without any source code modifications. We showed that such a run-time system exists
and, furthermore, is practical. We evaluated Elektra on 16 large, real-world FLOSS
applications and presented more detailed case studies on some of the applications. Only
by changing configuration settings and writing simple specifications, we improved context
awareness in several case studies, often even flawlessly. We applied a context-oriented
software engineering process that supports systematic applicability [234].

We facilitated a context-aware key database using configuration files. Calls to frontends,
such as getenv and open, are forwarded to Elektra’s implementation of context-aware
configuration access. Furthermore, the same context information, configuration settings,



312 CHAPTER 9. CONCLUSION AND FUTURE WORK

and specifications are reused between applications to improve on the configuration inte-
gration problem. A unique property of our approach is that it enables context awareness
without any modifications in source code [232].

Our results related to unanticipated context awareness are [232]:

• With our approach applications are more aware of their context. This context
awareness leverages application integration.

• Our work demonstrates that deducing configuration settings from context is realis-
tic.

• We provide experimental validation in a case study of significant complexity.

• The evaluation offers some clues on the potential of context awareness.

Avoiding manual considerations of context and validation in configuration access addresses
a source of misconfiguration [234].

Our approach demonstrates that it is not required to foresee every possible context during
development. Instead we introduce layers and configuration settings during deployment.
Elektra is modular due to the separation of context sensors and applications. The source
code and run-time analysis shows that dependence injection, i. e., ‘hijacking’ existing
getenv and open invocations, enables more context awareness [234].

We showed how we systematically integrated all 1,957 configuration settings of Firefox
to provide seamless adaptation to workplaces. We never needed to modify Firefox’s
source code [234].

Future Work: We plan to integrate more context awareness and to conduct larger case
studies [230]. Ideally, whole desktop environments are elektrified with a single implemen-
tation of an API. The open interception can be reimplemented as file system in user
space (FUSE), which is a less intruding solution. We take advantage of the fact that
Elektra is by no means limited to intercepting getenv and open. For example, we
started implementing the API GSettings used within the desktop environment GNOME.
It has the potential to make all GNOME settings context aware. Extensions to make even
more forms of configuration context aware (configuration for plugins, modules, mobile
APIs etc.) remain as future work [234].
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