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Abstract

It is important for applications to be instantaneously aware of configuration changes.
When multiple applications execute their configuration update logic as a result to
configuration change notifications this opens the door for emergent misbehavior like
unwanted oscillation, unwanted synchronization and phase change. Hence we investigate
current approaches for detection, diagnosis and mitigation of emergent misbehavior.
Informed by this investigation we propose and implement a notification feature for the
configuration management framework Elektra. We present guidelines for users of the
notification feature and show in which scenarios applications benefit from the use of
notifications.
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CHAPTER 1
Introduction

1.1 Problem Statement
In areas where configuration is frequently changed it is vital for computer applications to
be instantaneously aware of configuration changes. Awareness of configuration changes
allows applications to implement reactions to changes at run-time. We avoid outdated
configuration and application restarts.

Configuration provides information about an application’s environment and available
resources like files, printers or database servers. Over time resources are added, change
location or become unavailable. Unexpected behavior will occur if an application is not
aware of these changes and tries to utilize unavailable resources.

When an application requires a restart due to configuration changes it becomes unavailable.
This problem can be solved by adding redundancy to the system architecture. Using
this strategy some application instances can restart while other instances keep running
with the previous configuration, therefore maintaining the overall system availability. For
example, multiple instances of a web service can run with a load balancer distributing
incoming requests between those instances. But this strategy adds complexity and is not
always feasible.

In summary, applications that are aware of configuration changes have less sources of
error. They improve user experience through increased availability while adapting faster
to environmental changes.

Elektra is a framework that allows applications and system operators to read, validate
and write their configuration using a global key database. What Elektra currently lacks
is an integrated way of notifying and updating applications when configuration changes
occur. This does not only solve the problem of restarts and outdated configuration but
also reduces the timespan until a new configuration is applied since customized update
logic can be executed within the application.
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1. Introduction

When applications react to configuration changes made by other applications this can
lead to emergent behavior. We speak of emergent behavior when the parts of a system
are functioning as designed but an unintended, unexpected or unanticipated behavior at
system level occurs. For example, take the following sequence of events:

1. application Γ changes its configuration
2. application ∆ receives a notification about the change from Γ and updates its

configuration

Given these two steps the sequence could be a case of wanted emergent behavior: Maybe
application ∆ keeps track of the number of global configuration changes. Now consider
adding the following events to the sequence:

3. application Γ receives a notification about the change from ∆ and changes its
configuration

4. continue at step 2

The additional step causes an infinite cycle of configuration updates which introduces
emergent misbehavior.

We need to differentiate between wanted emergent behavior and unwanted emergent
misbehavior. The first can be beneficial for a system of applications while the latter
can result in unwanted oscillation, livelock or unwanted synchronization[1]. Examples of
emergent misbehavior in the context of configuration are frequently found in popular
applications like KDE[2] or Consul[3] and embedded systems like routers[4].

For example, within the KDE desktop environment two components were working well
on their own but in conjunction caused a race condition. The first component (the X11
window system) indicated that the configuration had changed because a new display
became available. Then the second component (the kscreen daemon) tried find a suitable
monitor configuration. Kscreen would apply the configuration to the X11 window system
resulting in another configuration change notification. As a result the daemon would
again search for a configuration and apply it. The workaround was to stop reacting to
configuration changes until the window system had applied the new configuration.

1.2 Goals of this Thesis
The aim of this thesis is to propose and implement a notification feature that adds push
abilities to Elektra. Applications will be notified about configuration changes and allowed
to update their configuration at run-time. Notifications shall not be limited to a single
transport technology since system operators shall be able to define which kind of transport
is used. The transport message format shall be documented to allow interoperability
between applications using Elektra and applications using these transports. Transport
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1.2. Goals of this Thesis

technologies like D-Bus or ZeroMQ shall be supported. These will be implemented as a
proof-of-concept for the notification architecture.

We will analyze the new feature for possible sources of emergent misbehavior. In this
thesis we will briefly cover emergent behavior and focus on emergent misbehavior. We will
exclude intentional malicious behavior or the exploitage of emergent misbehavior. Due to
the decentralized nature of Elektra applications will need to detect emergent misbehavior
based on their local environment. In response to configuration change notifications
applications will execute arbitrary logic, hence it is only possible to design argound those
black boxes. The lack of a global system view (we only have a local environment) or a
complete system specification (we only have black boxes) makes automated mitigation
difficult. Therefore we will discuss mitigation of emergent misbehavior theoretically and
present guidelines for emergent misbehavior mitigation.

The implemented notification feature will be evaluated by conducting a case study. A
simple application with configuration provided by Elektra will be evaluated using the
new functionality.

Based on the defined scope the following research questions need to be answered:

RQ 1 (Emergent Misbehavior) What kind of emergent misbehavior can result from
change notifications and how can it be mitigated?

RQ 2 (Comparison) How does the use of notifications compare to polling in an appli-
cation in terms of feasibility, lines of code and CPU usage?
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CHAPTER 2
Emergent Behavior and Elektra

In this chapter we will expand on emergent behavior and examine current approaches for
handling emergent behavior and emergent misbehavior in particular.

We will analyze Elektra’s architecture and draft requirements for handling emergent
behavior. We then review current approaches for detection, diagnosis and mitigation of
emergent behavior and explain how they apply to Elektra and our notification feature.

2.1 Background
When designing a system it is desirable to use components with predictable and well-
defined behavior. As a system grows larger and gets more complex unpredictable behavior
emerges that was neither intended by the system designer nor by the designer of the
components. This system behavior is called emergent behavior if it cannot be explained
from its components but only from analysis of the whole system.

Emergent behavior is not only found in complex systems but also in other fields such
as control systems[5]. Typical examples of emergent behavior are flocking of birds[6]
and Conway’s Game of Life[7]. These examples are frequently used in research for
simulations[8][9][10]. In these simulations unexpected behavior emerges from a set of
simple rules.

Emergent behavior can be beneficial for a system (e.g. useful cooperation in an ant
colony) but it also has disadvantages. Systems that bear unwanted emergent behavior
are difficult to manage and experience failures in the worst case. This kind of unwanted
emergent behavior is called emergent misbehavior.

Examples of emergent misbehavior are traffic jams or the Millenium Footbridge incident
in London. The day the Millenium Footbridge was opened to the public it encountered
“unexpected lateral movements [. . . ] as pedestrians crossed the bridge”[11]. As a result
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2. Emergent Behavior and Elektra

of these movements pedestrians had difficulties walking over the bridge. The bridge was
closed down for further investigations. It was found that pedestrians had synchronized
with the bridge’s natural swaying frequency which further increased the amplitude of the
bridge’s movements. The behavior of the pedestrians was not expected and additional
dampening had to be installed before the bridge was reopened.

Mogul[1] reports an example of emergent misbehavior in the context of configuration.
The system in his example consists of a load balancer, two application servers and
two database servers connected to each of the application servers. The load balancer
distributes requests from clients to the application servers. The load balancer also detects
failures of an application server when it fails to respond within a certain time limit.
At first the system works as expected but suddenly the load balancer declares failure
of both application servers. Due to the amount of data stored the database server’s
response had increased over time to a point where the application servers exceeded the
load balancer’s time limit. While no component had failed the whole system experienced
emergent misbehavior.

Fromm[12] introduced a taxonomy of emergent behavior. It consists of types I to IV.
Each type builds on the preceding type. These types describe simple emergent behavior,
weak emergent behavior, emergent behavior with multiple feedback and strong emergence.
Because systems of applications using Elektra have active components (applications) and
feedback they are classified as at least type II according to the taxonomy.

In order to treat emergent misbehavior we need to detect whether an emergent behavior
is present, then we need to diagnose it in order to differentiate whether the behavior is
wanted. Finally if unwanted behavior is present, we need to apply mitigation to counter
it.

A group of applications using Elektra potentially constitutes a large complex system
with emergent behavior. This complex system consists of applications as components
which are connected by configuration storages. With the addition of the notification
feature components are additionally connected via notification channels. This notification
architecture also allows applications to run custom update logic on configuration changes.
This update logic enables us to circumvent application restarts thereby decreasing
adaption time on configuration changes. Then again, it also increases the possibility for
emergent behavior by allowing applications to directly react to changes made by other
applications.

The composition of applications using Elektra cannot be anticipated by neither Elek-
tra’s developers nor application developers. The set of active components is constantly
changing as applications are started and stopped. This implies that a system’s emergent
behavior is also constantly changing. As a result emergent behavior can only be treated
when it occurs live at run-time. In this case interventions by humans are not feasible
which makes automatic treatment necessary.

Elektra is designed not to have a single point of failure. Therefore there is no central
entity (i.e. background process or daemon) that controls access to the key database.
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2.2. Detection

Each application uses functions from the Elektra library and stores in its memory a copy
of the part of the global key database it is working with. This requires decentralized
treatment of emergent behavior at the component level.

In summary Elektra requires decentralized automatic live detection, diagnosis and mitiga-
tion of emergent behavior.

2.2 Detection

Detection is responsible for the decision whether emergent behavior is present in a
system. In order to be able to detect emergent behavior we need to detect if a system
deviates from normal system behavior. Depending on the approach we also need to define
normal system behavior. Existing approaches for detection of emergent behavior can be
categorized into formal, event-based and variable-based approaches. We will give a short
overview of each category and discuss to which extent they are applicable to our system
of applications using Elektra.

Formal approaches are based on formal languages. Most formal approaches use
grammars[13] to deduce emergent properties from the difference between states
of the whole system and superimpositions of the system’s component states. In
order to create grammars for these approaches it is required to know all possible
component behaviors. Due to the number of combinations approaches in this
category suffer from state-space explosion as systems get more complex. These
approaches do not require prior observation of the system in order to find possible
candidates for emergent behavior properties because they are deduced from the
grammars.
There are also approaches using logic formulae. A decentralized approach detects
emergent behavior by evaluating these logic formulae in a network of components[14].
This approach requires the description the expected emergent behavior in formulae.
Model-based approaches which also fall into this category rely on domain knowledge
to construct the required models. For example, an approach uses message sequence
charts and semantic causality to determine what message caused another mes-
sage[15]. According to this approach emergent behavior arises when the resulting
finite state machines have identical states which can lead to ignoring messages.
For our system it would be required to know all possible component behavior in
order to be able to construct grammars. This makes grammar-based approaches
unsuitable for our purposes since the set of executed applications is constantly
changing. There is no way to know every possible behavior at design-time. Formulae-
based approaches contain the exact conditions for specific types of emergent behav-
ior encoded in their logic formulae. This limits the the type of detectable types
of emergent behavior. Because we will only provide the framework for sending
and receiving notifications a part of the model specification is filled in later by
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2. Emergent Behavior and Elektra

applications. Therefore required domain knowledge is missing for model-based
approaches.

Variable-based approaches process component variables or derived metrics that de-
scribe component state or relations between components (i.e. interactions). Emer-
gent behavior is detected from variable changes using statistical analysis, graph
analysis or other techniques. For example, an approach detects emergent behavior
by measuring entropy at the start and end of a simulation run[16]. Emergent
behavior is present if entropy has decreased over time. Typical variable-based
approaches require domain knowledge to define which variables to observe.
These approaches depend on the selection of variables for observation in order
to allow detection of emergent behavior. Since a system of applications using
Elektra inherently has a constantly changing system behavior, emergent behav-
ior is likely also dependent on the set of involved components and is therefore,
constantly changing too. This reveals that we cannot sufficiently select variables in
advance that ensure that emergent behavior can be detected. However, an approach
by O’Toole, Nallur, and Clarke[17] performs automatic selection of variables at
run-time using statistical methods.

Event-based approaches are based on single and complex events[18]. Single events
capture a state change of multiple variables over a duration of time. Complex
events are composed from single and other complex events. Emergent behavior
is detected from the presence of selected complex events that were defined using
domain knowledge. In event-based approaches the sequence of events describes
what lead to an instance of emergent behavior.
Event-based approaches require domain knowledge for definition of complex events
that allow detection of emergent behavior. We may be able to define such events in
advance informed by yet to be discovered typical patterns of emergent misbehavior
in systems of applications using Elektra. These events will be limited in which
emergent behavior can be detected since their definitions are based on assumptions
about specific patterns and they are focused on emergent misbehavior. Despite this
focus on emergent misbehavior diagnosis is still relevant to detect false positives.

In the Section 2.1 we have established that a system of applications using Elektra requires
decentralized automatic live detection of emergent behavior. Additionally the set of
components and therefore, behavior in our system is constantly changing.

Event-based approaches require prior definition of events and are only able to detect
emergent behavior encoded into these event definitions. The formulae based approach
has the same limitation. Grammar based approaches require knowledge about all states.
Even if it were possible to enumerate all states from applications the grammars would
have to be rebuilt whenever the set of running applications changes. From the previous
categories variable-based approaches are best suited for our purposes.
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2.3. Diagnosis

There exist many variable-based approaches for detection of emergent behavior[9][19] but
as Elektra requires decentralized detection it is necessary to detect emergent behavior
locally at the component level.

Emergent behavior generally occurs when actions at the component level result in a
change of system level behavior. This is called upward causation and is present starting
with type I of Fromm’s taxonomy. In systems with type II emergent behavior components
are also affected by the system behavior in the opposite direction through top-down
feedback. For example, in a traffic jam the volume of cars (or components) creates an
emergent behavior (congestion), but cars are also affected with reduced speed and choice
of route by the emergent behavior. This concept is called downward causation. As we
have established, our system of applications using Elektra is classified as type II. This
allows us to argue that in our system emergent behavior is detectable locally at the
component level and that therefore, detection can be performed decentralized.

Downward causation is used in the decentralized variable-based approach by O’Toole,
Nallur, and Clarke[17]. This approach performs automatic selection of variables using
statistical tools. These variables are fed into a change detection unit which uses a
sliding window and cumulative sums to dectect change points in the selected variables’
time-series. Change points indicate that emergent behavior may be present. To reduce
false positives a collaboration unit compares local results with those of randomly chosen
neighbors. Since this approach can detect emergent behavior automatically in a live
system it satisfies all our requirements for emergent behavior detection in our context.

2.3 Diagnosis

Once emergent behavior is detected it is necessary to perform diagnosis on the behavior
in order to decide whether it is unwantend emergent misbehavior or wanted emergent
behavior. While we want to stop unwanted behavior we do not want to stop behavior
like cooperation between applications (e.g. applications sharing configuration settings).
The decision between unwanted or wanted behavior is subjective and dependent on the
desired goals for a system.

For many existing detection approaches diagnosis is out of scope. These approaches
perform detection of emergent behavior in agent-based simulations. When a simulation
shows emergent behavior the system designer decides whether the behavior is unwanted
and alters the agent’s parameters, rules or program and reruns the simulation until
the unwanted behavior is mitigated or does not occur anymore[8][9][20]. Due to our
requirement for automatic detection at run-time this design-time simulation based process
is not applicable.

Some approaches do not separate between diagnosis and detection process[21][22]. An
approach diagnoses emergent behavior by comparing an interaction graph with a refer-
ence graph[21]. Unfortunately this approach is not decentralized and requires domain
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2. Emergent Behavior and Elektra

knowledge for constructing the reference graph and classifying it as wanted or unwanted
behavior.

For variable-based detection approaches defining goals is natural. These goals define
thresholds for variables like “throughput” and ensure that a system is operational. If
the goals are violated and emergent behavior is detected the current system behavior is
unwanted.

An approach by Khan et al.[22] combines detection and diagnosis. It uses performance
goals to add additional information the diagnosis process. These goals contain metrics
like “average response time” and “response throughput” with corresponding thresholds.
A system operator can supply additional information by marking events with different
colors. Depending on the type of symptom the green category is used for events that
counter the symptom and red reversely. For example, if high energy consumption is
diagnosed, green is used for events that decrease consumption (e.g. shutdown of a virtual
machine) and red is used for events that increase consumption. Because this approach
performs diagnosis on a complete view of the system it cannot be performed decentralized.

Currently there exists no approach for diagnosis that fullfills our requirements for
automatic decentralized live diagnosis of emergent behavior. We have introduced and
discussed multiple approaches with promising ideas but we had to reject them since they
did not meet our requirements.

2.4 Mitigation

Once emergent behavior has been detected in our system and eventually diagnosed as
unwanted it is necessary to put countermeasures into action. Applications that detect
emergent behavior could be simply cut off the system. But the emergent behavior might
be so ubiquitous that is affects all applications. We also could have incorrectly diagnosed
a cooperative emergent behavior as unwanted. Therefore, it is better to mitigate emergent
behavior which keeps a system operational.

Until now we have looked at the results of emergent behavior. We started with unspecified
behavior and tried to detect and diagnose it automatically. For mitigation it is necessary
to look at the circumstances that encourage emergent behavior, understand them and
the resulting symptoms.

Mogul[1] has suggested to create a typology of symptoms and causes for emergent misbe-
havior. Of these causes a system of applications using Elektra has decentralized control
and massive scale. However, the presence of a cause does not directly lead to emergent
behavior. These causes are merely causal factors since they contribute to or encourage
emergent behavior.

An evaluation of our system shows that it can exhibit the following symptoms from the
aforementioned typology:
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2.4. Mitigation

Symptom Synchronization Oscillation

Suggested actions
Over design capacity;
induce randomness;
introduce perturbations

Decoupling;
induce randomness

Table 2.1: Suggested mitigation actions for emergent behavior[23]

• Synchronization occurs due to the shared notification medium. Multiple applications
receive a notification at the same time and execute their configuration update logic.
In turn shared resources like hard disk or CPU become overutilized.

• Oscillation occurs when applications are reacting to configuration changes by other
applications.

• In the worst case oscillation results in livelock when the frequency of configuration
updates becomes so high that applications are only executing configuration update
logic.

• Phase change is a sudden change of the system behavior in reaction to a minor
change (e.g. incremental change of a configuration setting). While phase change is
possible, it stems from application logic and is therefore, out of Elektra’s scope.

Reid and Rhodes[23] are building on Mogul’s idea of a typology for emergent misbehavior.
In their work they have suggested to build a set of design patterns that help to identify
and address both emergent misbehavior and emergent behavior. While their set of design
patterns is intended to be completed by follow-up research they have also linked selected
symptoms to according actions for mitigation and encouragement of emergent behavior.

As we can see in Table 2.1 inducing randomness is a common denominator of both
symptoms. In our system livelock is a special case of oscillation and phase change.
Therefore livelock is out of scope and we can conclude that inducing randomness is a
viable action for mitigating emergent misbehavior.

To mitigate emergent behavior in our system of applications using Elektra, upon receiving
a notification we recommend to randomly wait before an update is propagated to the
application. This will mitigate both synchronization and oscillation. Additionally
decoupling for oscillation is introduced by rejecting identical notifications during the time
delay: Notifications about configuration changes of the same key that are received during
the random time delay get rejected and do not start a new random delay. However,
notifications about changes to other keys start a new random delay. We will use a variant
of this approach later in the case study in Chapter 4.
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2. Emergent Behavior and Elektra

2.5 Summary and Discussion
We have evaluated different approaches for detection, diagnosis and mitigation of emergent
behavior in the context of a system of applications using Elektra:

Detection: We have found that the variable-based detection approach by O’Toole,
Nallur, and Clarke[17] did meet our requirements.

Diagnosis: While we could not find a suitable approach for diagnosis we were able
to determine that goals aid the decision whether emergent behavior is wanted or
unwanted. The diagnosis approach by Khan et al.[22] could be decentralized by
constructing a partial view from collaboration with randomly chosen neighbors.
The non-automated part of coloring is out of scope for this thesis since it informs
analysis of the cause of a goal violation. In this thesis we are only interested in
mitigation of emergent misbehavior (RQ 1) and not in finding its cause. Validation
of the outlined approach is up for future work on this topic.

Mitigation: Based on symptoms of emergent behavior and a evaluation of our system
of applications using Elektra we have found countermeasures for mitigation of
emergent misbehavior.

Ultimately automatic live detection, diagnosis and mitigation of emergent misbehav-
ior can only lower the impact of faulty algorithms, applications or a combination of
applications, not repair them. A system that exhibits emergent misbehavior is inherently
faulty and remains so even if mitigation is applied.

Although detection, diagnosis and mitigation are constrained by Elektra’s position as
a library used by applications it is necessary to address emergent misbehavior close to
its possible origin. From an engineering perspective it is better to address a problem at
the earliest possible stage in the process to prevent increased damage or cost at later
stages. At every stage from Elektra’s design, developers integrating Elektra into their
applications, system operators installing and configuring those applications and finally
to users experiencing emergent behavior, involved roles need to be aware of emergent
misbehavior in order to minimize its impact.

The custom update logic implemented in applications is a factor for emergent misbehavior
in our system. It is responsible for potential phase changes and for the likelihood of
synchronization, oscillation and livelocks. Therefore design guidelines for developers for
preventing emergent misbehavior are necessary.

Separate plugins will log application interactions with the key database to help developers
analyze possible problems. No automatic detection or mitigation is performed.

We recall our first research question RQ 1:

RQ 1 (Emergent Misbehavior) What kind of emergent misbehavior can result from
change notifications and how can it be mitigated?
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2.5. Summary and Discussion

We have established that a system of applications using Elektra requires decentralized
automatic live treatment of emergent behavior. Since the set of applications is constantly
changing, the behavior of the system also changes. Therefore its emergent behavior
(including emergent misbehavior) cannot be predicted in advance. Instead we have
outlined requirements and possible approaches for detection and diagnosis of emergent be-
havior. Furthermore we have examined possible symptoms of emergent misbehavior in our
system (synchronization, oscillation, livelock and phase change) and introduced possible
mitigations for these symptoms where necessary (induce randomness, decoupling).
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CHAPTER 3
Implementation

In the introduction we defined the requirements for the notification feature: Applications
should be notified about configuration changes and be able to update their configuration
at run-time. Additionally notifications should not be limited to a single technology for
transporting notifications.

In the previous chapter we have found that in order to treat possible symptoms of
emergent misbehavior in a system of applications using the notification feature we have
to induce randomness and introduce decoupling when delivering notifications (Table 2.1
on page 11).

Building on these requirements and findings we will now present the architecture of
notifications for applications using Elektra. We will give a short overview and provide
details for each involved component.

3.1 Background

The Elektra framework consists of libraries and multiple tools for accessing the global key
database (KDB). In this database a configuration setting consists of a key and its value.
The key database is organized hierarchically so that any application can store its settings
in it. It is possible to mount configuration files in a similar fashion to devices in a UNIX
file system. Elektra has a minimal core and most of its functionality is implemented
by plugins. Elektra’s plugins implement different functions like storage, validation and
filtering. Before this work over 80 plugins existed of which one implements notification
functionality. This plugins sends notifications via D-Bus (a message bus system for Linux
desktop systems) when a setting is changed. In order to use a plugin with Elektra it is
required to either mount it with a configuration file or mount it globally. When a plugin
is mounted globally all configuration settings are passed through it.
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3. Implementation

Currently, to get configuration updates, applications have to repeatedly read from the
key database (also called polling) or watch for notifications on D-Bus. As stated in
the introduction we want applications using Elektra to be notified about configuration
changes and allow them to update their configuration at run-time. Besides sending
notifications this also requires receiving them. Applications could directly use plugins but
this would couple them to specific plugins. Instead we will create a notification application
programming interface (API) which allows applications to receive configuration updates
in a more integrated and user-friendly way. By using an API we also decouple applications
from the plugins that transport the notifications: Instead of D-Bus we can use other
techniques for sending and receiving notifications.

3.1.1 Asynchronous Processing

In order to be able to receive notifications asynchronous processing is required. Without
asynchronicity programs would stop (or block) until a new notification arrives. A program
is a series of instructions. The control flow dictates in which order instructions are
executed. When a notification is available the normal control flow needs to be interrupted
to process the notification. In order to detect available notifications it is also required to
know when an underlying transport has data available. For example, a network service
like D-Bus uses sockets to transport its data. To detect when data is available applications
normally use I/O functions like select or poll. However, these functions block the
control flow until data is available. To circumvent blocking applications can create
processes or threads and handle notification processing there. Processes and threads have
their own separate control flow and therefore do not interfere with the normal control
flow. However, applications need to synchronize with these processes and threads which
is error-prone and hard to maintain.

I/O functions like select allow us to pass a timeout after which the function returns if
there is no data available. This timeout can be arbitrarily short. In this case the function
will return immediately - with or without data. Embedded in a loop these functions
allow an application to do other tasks and check again later if there is data available.
This is the basic idea of an event loop. In event loops time-consuming tasks are divided
into slices and executed among other slices. Every iteration the event loop checks if other
events (e.g. “socket has data”) are available.

Event loops are often used in graphical user interface (GUI) applications (i.e. Windows,
Gnome or KDE) but are also used for network services (i.e. Netty1 or Node.js2). Event
loops enable separation of application specific code from the event loop implementation.
This also enables libraries like Elektra to integrate into event loops. There are multiple
event loop libraries available that abstract away system and I/O function calls.

1https://netty.io/, accessed August 2018
2https://nodejs.org/, accessed August 2018
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3.2. Architecture

3.2 Architecture
Elektra’s notification feature consists of a notification library, plugins for handling the
transport of notifications and a solution for allowing asynchronous processing called I/O
binding (see Figure 3.1).

The notification library implements the API for receiving and handling notifications.
Applications use this API to subscribe to changes of settings. Internally the library uses
a plugin to implement the functionality. This enables the notification library to feed local
changes back into an application.

Notifications are transported using different plugins. Each type of transport typically has
two transport plugins: one for sending and one for receiving notifications. The system
operator decides which plugins are used and mounts them globally.

In order to receive notifications, transport plugins require asynchronous processing.
While we want to use different transport plugins we also need to support integrating
with different event loop libraries. The solution is an abstraction layer for asynchronous
processing called I/O binding. Components that are independent from the event loop
library (e.g. transport plugins) use the I/O interface implemented by the I/O binding
which implements integration with a specific event loop library. This allows asynchronous
notification processing by compatible plugins while being able to integrate into virtually
any event loop.

Separate plugins are responsible for logging when applications get and set configuration
settings. Since these plugins get mounted globally by system operators when required
they are not coupled to other components in the architecture. The resulting logs are
later analyzed for emergent misbehavior by either operators or application developers.

Application Event Loop

I/O Interface
Notification

Library

I/O Binding

Transport Plugins
Logging Plugins

Elektra

Notification API

Figure 3.1: Notification architecture

From an application developer perspective an application will initialize its event loop,

17



3. Implementation

create an I/O binding and pass it to Elektra. Afterwards applications will initialize the
notification feature using the notification API. The notification library mounts its internal
plugin globally and initializes mounted transport plugins. Then the application will
subscribe to changes of configuration settings it uses and continue with normal application
logic. We will explain how notifications are generated and processed in Section 3.5.

3.3 Notification API

Applications will use the notification API to implement notification features. The
notification library which implements this API provides the elektraNotification-
Register family of functions to let applications express interest in notifications about
changes to configuration settings.

The API will offer the ability to register application variables for changes to settings
for all of Elektra’s supported basic CORBA types (e.g. boolean, short, long or float).
Registered variables will be updated automatically when a setting is changed. When more
complex logic is required after a configuration change (e.g. rebuilding data structures)
applications will be able provide a callback function that is called whenever a setting has
changed.

3.4 Asynchronous Processing Abstraction

Transport plugins will use different libraries to send and receive notifications. In order to
do so without blocking the application, they use an abstraction layer for asynchronous
processing called I/O binding.

The I/O binding integrates into an application’s event loop which allows other processing
to continue while waiting for long-term tasks like network or file operations to finish.
Elektra will include bindings for common libraries like glib or libuv, but application
developers can implement their own bindings. Transport plugins will be implemented
against the I/O interface in order to be able to use different I/O bindings.

Use of an I/O binding is not necessarily bound to transport plugins or Elektra. It can
be used by other parts of Elektra to perform asynchronous operations. It can also be
used in applications to integrate libraries that require asynchronous event processing by
using a generic interface. This saves developers from the repetitious task of integrating a
library with a specific asynchronous event processing library.

The I/O interface is a data structure that contains pointers to the functions for managing
file descriptors, timers and idle taks. The I/O interface is allocated and populated by the
I/O binding’s initialization function and assigned to a KDB instance. This architecture
enables multiple and different bindings to be used in an application.

Timers allow us to schedule operations at regular time intervals. Idle operations allow
execution of long-time low-priority tasks when no other high-priority events require
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processing. On POSIX compatible systems a file descriptor is the most common basic
building block for notification about available data and asynchronous event processing. It
is used by various functions like select on Linux and kqueue on BSD. Other systems
are out of scope for this thesis.

3.4.1 Testing

In order to ensure that I/O bindings are interchangable an extensive test suite is provided
which ensures that operation characteristics are consistent.

Application developers can also test their custom bindings against this test suite.

3.5 Transport Plugins

A system operator defines which transports are used for notifications by mounting the
required plugins globally. Since all configuration settings are passed through the plugins
every change is detected.

For each type of transport there are separate plugins for sending and receiving notifications.
Receiving plugins perform no operations unless asynchronous processing by an I/O binding
is provided and the notification feature was initialized by an application. Sending plugins
will work without the notification feature initialized thereby enabling every application
using Elektra to send notifications without source-code changes.

A notification is generated when a sending transport plugin detects a change to config-
uration settings. These sending plugins can use the postcommit plugin hook which
is triggered after a change has been applied successfully to the key database to inform
other applications about changes. A sending transport plugin is not required when other
sources for triggering a notification are used (e.g. triggers in database).

For every transaction the name of the topmost changed configuration setting is included
in the notification which is sent over a communication channel. Instead of sending
notifications for every individual changed setting we take advantage of the hierarchial
structure of the key database. This reduces the amount of notifications while maintaining
the ability to notify which parts of the key database have changed.

The receiving transport plugin of another application using Elektra subscribes to changes
of settings on the same communication channel as the sending transport plugin. When a
notification is received the changed setting is forwarded according to the application’s
registration to the notification library which loads the changed settings from the key
database.

This implicitly triggers the internal plugin of the notification library. Depending on
the registration done by the application either a variable is automatically updated or a
callback supplied by the application for the changed setting is called.
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3.5.1 Characterization of Transports

A notification transport needs to be capable of delivering notifications to from a single
sender to multiple receivers. A sender is unware of the receivers and uses a service to
deliver notifications. Reversely receivers are unaware of the senders and only connected
to them through a service. Furthermore a receiver shall not be blocked while waiting for
the next notification.

These requirements are fulfilled by publish/subscribe systems. Within such systems
publishers publish information about events to an event service[24]. Subscribers subscribe
with the event service and receive notifications about events. Publish/subscribe systems
provide time decoupling, which means that the publisher of an event and subscribers
receiving the event must not be connnected to the event service at the same time. Both
publishers and subscribers do not interact directly with each other but only through the
event service, which is called space decoupling. Furthermore publishers are not blocked
during sending until all subscribers have received notifications and conversely subscribers
are not blocked until the next notification arrives, which results in synchronization
decoupling. Elektra can take advantage of decoupling in space and synchronization within
publish/subscribe systems.

3.5.2 D-Bus Transport Plugins

The existing D-Bus plugin was transformed into a transport plugin for sending notifica-
tions.

For receiving notifications via D-Bus a new plugin was implemented. In order to receive
D-Bus signals a “match-rule” is sent to the D-Bus daemon while incoming signals are
processed.

3.5.3 ZeroMQ Transport Plugins

Proof-of-concept transport plugins using ZeroMQ’s publish/subscribe sockets were cre-
ated.

ZeroMQ provides a file descriptor for signaling which is implemented with edge-triggererd
notifications. As a result the descriptor signals only once when notifications are available
and does not signal again until the message queue is emptied.

A naïve solution is to consume all notifications immediately but this potentially time-
consuming operation would block the event loop if notifications were received continuously.
To combat this issue, idle operations were be used to read remaining messages without
interfering with other operations.

Since ZeroMQ did not provide publish/subscribe with multiple subscribers and publishers
out of the box a intermediary message hub was implemented.
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3.5.4 Comparison of Transports

D-Bus is the de-facto standard for Linux desktop IPC and mainly targets single hosts.
D-Bus is available for many desktop systems or can potentially be used on them. It is
available for Linux, FreeBSD and ports for MacOS are available.

Although ZeroMQ can be used to spread notifications over a network, its local inter-
process communication (IPC) transport can be used as an alternative to D-Bus on POSIX
compatible operating systems (e.g. for embedded systems).

3.5.5 Configuration

Application developers can only specify whether or not they want to receive and handle
notifications, but not which transport plugin is used.

System operators can mount the desired transport plugins and configure them (e.g. set
channel, host, port and credentials) globally.

System operators need to mount receiving and sending plugins to use a transport, as
shown in section 4.2.7 of our next chapter, “Case Study”.
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CHAPTER 4
Case Study

In this chapter we will present our findings from a case study conducted to show the
feasibility and practicability of the new notification feature presented in the previous
chapter. We have adapted an existing application to use the notification API.

After replicating the required steps and highlighting both benefits and possible pitfalls
we will compare the new application version with its original version. Finally we will
present guidelines designed to handle emergent misbehavior using the notification API
and discuss our findings from the case study.

4.1 Application: Humiditycontrol

The application we adapted is called “humiditycontrol”. This application reads data from
humidity and temperature sensors inside and outside a building and operates ventilation
based on several target values like heating cost factor and maximum desired humidity.
This application is targeted for use in an embedded system therefore resource-efficient
operation is desired.

The application uses a library called “libautomation”1 which aims at facilitating creation
of industrial and home automation applications. It supports centralized data acquisition
and distributes data source readings among applications using shared memory. The
library uses “libev” a library for asynchronous processing with event loops.

Before the case study the application “humiditycontrol” read its configuration containing
data source paths and target values from a file. In this file a configuration setting
consisted of a key and a value separated by a horizontal tab (\t).

1https://repo.or.cz/libautomation.git, accessed August 2018
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4.2 Implementation

For this case study we will change the application to only use Elektra’s new notification
API for reading target values from configuration.

To this end we need to perform the following steps:

1. Link the application against required libraries

2. Add the required header files for Elektra and its notification API

3. Open Elektra’s Key Database (KDB)

4. Create and set an I/O binding

5. Initialize the notification API

6. Register variables holding target values

7. Verify that target values are updated at run-time

4.2.1 Linking and Headers

First we have to link the application against all required libraries. The notification and
I/O API are implemented by the libraries elektra-notification and elektra-io. Since we
will integrate into the main loop of the application we will use the I/O binding for “libev”
which is implemented by the elektra-io-ev library.

The next step is to include the required header files.

1 #include <elektra/kdb.h>
2 #include <elektra/kdbio/ev.h>
3 #include <elektra/kdbnotification.h>

Listing 4.1: Required header files

In this step we experienced a syntax error caused by a name collision of KEY_MODE used
as argument for Elektra’s keyNew() function with the definition of a keyboard input in
the “linux/input-event-codes.h” header file. A quick workaround was to rearrange the
header files so that Elektra’s header files were included first.

We also found that KEY_END was used by both Elektra and the “linux/input-event-
codes.h” header file. Since KEY_END was not already used in the source code we could
use Elektra’s definition.
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4.2.2 Opening Elektra’s Key Database

To start reading and storing configuration settings from the global key database we need
to create an instance of KDB by calling kdbOpen(). Configuration settings within KDB
are represented by the Key type. The kdbOpen() function uses such a Key to store
additional diagnostic information like warnings and errors.

Usually a Key containing the name of the root of the application configuration settings
is used. This Key is used in the next steps to obtain these settings.

Since Elektra’s key database is used by multiple applications a naming convention applies
for storing and retrieving application specific configuration settings. We will use the name
"/sw/libautomation/humiditycontrol/#0/current" for this application. Per
convention this name consists of several parts separated by "/" to indicate a new
hierarchy level:

1. sw stands for software

2. libautomation is the URL or organization name

3. humiditycontrol is the application name

4. #0 is the major version of the configuration settings. If an application introduces
incompatible changes to its configuration settings (e.g. the type of a value is
changed from string to numeric) this number is increased.

5. current is reserved for profiles. This allows applications to have multiple user
profiles.

On the top-level of the hierarchy there are so called namespaces. Namespaces have
different meanings and write semantics. For example, the system namespace is only
writable by system operators and meant to store system default settings. The user
namespace is user specific and writable by users.

A powerful feature of Elektra is cascading which is used when a setting is accessed
using "/" at the beginning of a Key name. When a setting is accessed using cascading
Elektra’s namespaces are searched for the setting in a specific order. For example, the
user namespace is searched before the system namespace. This allows users to override
system defaults.

The code shown in Listing 4.2 opens the key database. The atm_fail() function prints
an error and exits the application. All functions in this chapter starting with "atm_"
are part of the “libautomation” library.
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1 int main(int argc, char **argv){
2 // Variable declarations, libautomation initialization,

etc.↪→

3 // ...
4

5 // Open KDB
6 parentKey = keyNew

("/sw/libautomation/humiditycontrol/#0/current",
KEY_END);

↪→

↪→

7 kdb = kdbOpen (parentKey);
8 if (kdb == NULL) {
9 atm_fail ("kdbOpen failed");

10 }

Listing 4.2: Opening KDB

4.2.3 I/O Bindings

Now that we have created a KDB instance we have to create an I/O binding. As explained
in Section 3.2 on page 17 an I/O binding allows Elektra to integrate into an event loop
to perform asynchronous processing.

1 // Open KDB
2 // ...
3

4 // Init I/O bindings
5 ElektraIoInterface * binding = elektraIoEvNew

(EV_DEFAULT);↪→

6 elektraIoSetBinding (kdb, binding);

Listing 4.3: Using an I/O binding

In Listing 4.3 the function elektraIoEvNew() creates an I/O binding for the “libev”
default main loop which is obtained using EV_DEFAULT. The function elektraIoSet-
Binding() sets the I/O binding for the application’s connection to the key database.
Only the two lines above were necessary to make Elektra integrate into the application’s
main event loop.

4.2.4 Initialize Notifications

The next step is to initialize the notification feature. In Listing 4.4 a call to elektraN-
otificationOpen() mounts the internal notification plugin globally for the process.

26



4.2. Implementation

This allows the API to detect changes to configuration settings and update registered
variables. If present receiving transport plugins are also intialized by this function call.
This allows plugins to connect to a service and start receiving notifications.

1 // Init I/O bindings
2 // ...
3

4 // Initialize Notifications
5 if (!elektraNotificationOpen (kdb)) {
6 atm_fail ("could not open notification");
7 }

Listing 4.4: Initialization of the notification API

4.2.5 Register Variables

We will now register the target values from our application for automatic updates.

When a configuration setting holding a target value is changed the according variable in
the running application is automatically updated. Since the application runs its control
routine at regular intervals automatic updates are well suited for this type of application:
After an update the control routine bases its next calculation on the new values.

1 while(getline (&line, &len, f) > 0){
2 if (line[0] == '#')
3 continue;
4

5 first = strtok (line, " \t");
6 rest = strtok (NULL, "\n");
7

8 if (!strcmp (first, "out_temp"))
9 tempo = atm_ds (rest, first);

10 // ...
11 else if (!strcmp (first, "interval"))
12 interval = atm_read_float_or_fail (rest, first);

Listing 4.5: Configuration parsing before the case study

Before the application used Elektra the code in Listing 4.5 was used to parse configuration
settings. The code reads the configuration file line by line and uses the strtok() string
processing function to extract the name of the setting (stored in the variable first)
and the remainder of the line (rest). In lines 8 and 9 the setting for out_temp which
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is a data source is read and applied. In lines 11 and 12 the interval setting is read.
The name of the function atm_read_float_or_fail() is self-explanatory: It tries
to convert the content of rest to float. If this operations fails the applications exits.

Using Elektra’s notification API in Listing 4.6 variables are registered with elek-
traNotificationRegisterDouble(). This function takes a handle to the KDB
instance, a Key holding the name of the settings (in this case “/sw/libautomation/
humiditycontrol/\#0/current/interval”) and the address of the variable that
should be updated on changes.

The semantics for all elektraNotificationRegister() functions are: Iff a config-
uration setting is present and it has a valid value (e.g. correct format) then the registered
variable is updated.

1 keyAddBaseName (registerKey, "interval");
2 if (!elektraNotificationRegisterDouble (kdb, registerKey,

&interval)) {↪→

3 atm_fail ("could not register interval");
4 }

Listing 4.6: Registration of variables

The “interval” setting in the application was declared as ev_timestamp. We assumed
ev_timestamp was defined as float type (floating point with single precision). On
compilation it turned out that it was defined as double (floating point with double
precision). Since all functions for registering variables are typed this mistake was caught
early.

4.2.6 Polling

The next step is to retrieve configuration settings from Elektra’s key database. We already
have initialized KDB, an I/O binding and the notification feature. By calling kdbGet()
Elektra will automatically update registered variables if matching configuration settings
are present. Since in this application we only use registered variables we can discard the
configuration immediately using ksDel().

1 // Update elektra configuration manually
2 KeySet * config = ksNew (0, KS_END);
3 kdbGet (kdb, config, parentKey);
4 ksDel (config);

Listing 4.7: Retrieving configuration settings
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As mentioned before the application performs its control routine at regular intervals. We
also added the code from Listing 4.7 to the control routine. This polls Elektra’s key
database for configuration updates. No further actions are required to keep registered
variables synchronized with the key database.

4.2.7 Using Transport Plugins

Performing manual updates through polling is not ideal. We will now remove the
additional code shown in Listing 4.7 from the control routine and use transport plugins
to send and receive notifications on configuration changes.

Since the application is targeted at embedded systems we will use the ZeroMQ transport
plugins called “zeromqsend” and “zeromqrecv”. ZeroMQ is well suited for embedded
systems due to its small memory footprint, small library size and small number of
dependencies.

Sockets provide an 1-to-n mapping since their communication scheme requires a well
known endpoint (e.g. an IP address and port): One socket binds to an endpoint while
several sockets connect to this endpoint. In case of a publish/subscribe system this
enables one publisher to talk to multiple subscribers or one subscriber have multiple
publishers.

This does not satisfy our requirements for a notification transport (see Section 3.5.1).
Therefore a hub is required that provides well known endpoints for both publishers and
subscribers to connect to. This hub distributes notifications among participating plugins
embedded into applications using Elektra.

The “zeromqsend” plugin detects changes to configuration settings and sends notifications
over ZeroMQ’s PUB socket. The hub receives notifications and forwards them to
connected subscribers. The “zeromqrecv” plugin receives notifications from the hub using
a ZeroMQ SUB socket and forwards notifications to the notification library.

Using different transport plugins requires no modification of the application’s source-code.
The first line from Listing 4.8 is typically executed when the system boots. The second
line which mounts the transport plugins is typically executed when the application is
installed.

1 kdb run-hub-zeromq
2 kdb gmount zeromqsend zeromqrecv

Listing 4.8: Global mounting and starting the hub

For the ZeroMQ transport we also have to ensure that the hub is running.

29



4. Case Study

4.2.8 Summary

The transformation from the original application to the current version2 using Elektra’s
key database with notifications took about 50 minutes. During the transformation 15
lines of code from the configuration parser (Listing 4.5) were made obsolete and 44 lines
were added. For lines of code we use the source lines of code (SLOC) metric which
excludes comment lines.

After this transformation the application is able to implement changes to its configuration
at run-time.

Besides the fixed amount of lines required for initialization, the registration of a Key
takes four lines of code using the notification API. Previously parsing a configuration
setting required two lines of code.

4.3 Callbacks

Registering a variable is suitable for applications where the variable’s value is simply
displayed or used repeatedly (e.g. by a timer or in a loop). If an initialization code needs
to be redone after configuration changes (e.g. a value sets the number of worker threads)
updating a registered variable does not suffice. For these situations a callback should be
used.

1 static void initKdb (void) {
2 if (kdb != NULL) {
3 // Cleanup kdb
4 elektraNotificationClose (kdb);
5 kdbClose (kdb, parentKey);
6 elektraIoBindingCleanup (binding);
7 keyDel (parentKey);
8 }
9

10 // Initialization code
11 // ...
12 }

Listing 4.9: Function with initialization logic for Elektra

We now add a callback for the configuration setting "system/elektra". Below this
setting Elektra stores internal information about the key database like mount points and
globally mounted plugins (both described in Section 3.1 on page 15). A callback for this

2https://repo.or.cz/libautomation/elektra-notification.git commit dce371f in branch “thesis”, ac-
cessed August 2018
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setting allows the application to react to changes to the key database configuration and
reload accordingly.

In order to reload the key database we moved the initialization code for Elektra into a
separate function called initKdb() (Listing 4.9) and added code for closing the key
database and cleanup. The remainder of the function is initialization code as shown in
Sections 4.2.2 to 4.2.5.

1 keySetName(registerKey, "system/elektra");
2 if (!elektraNotificationRegisterCallbackSameOrBelow(kdb,

registerKey, elektraChangedCallback, NULL)) {↪→

3 atm_fail("could not register for changes to Elektra's
configuration");↪→

4 }

Listing 4.10: Register for changes to Elektra’s configuration

In Listing 4.10 we register a callback for changes below "system/elektra" by call-
ing the elektraNotificationRegisterCallbackSameOrBelow() function after
registering variables.

Initially we used the function initKdb() directly as callback. This did result in an
application crash since after the callback had closed the key database connection the
logic inside the notification API tried to access already removed data structures. The
solution was not to use initKdb() as callback but set a flag indicating that the key
database should be reloaded and wait until the control flow is back in the main event
loop and then reload.

While verifying that our callback worked as desired we discovered a bug that resulted in
application crashes when using the “zeromqrecv” plugin. As a workaround we continued
with the “dbus” transport plugins and were able to mount a configuration file with a
different setting for the “highhumidity” target value. Upon mounting the application
would reinitialize KDB and use the new value from the mounted file through the registered
variable. When unmounting the configuration file the application would revert to the old
value again.

Once the bug that resulted in an application crash with the “zeromqrecv” plugin was fixed
we were able to complete a roundtrip of notification transports: After the application was
started with the ZeroMQ transport plugins mounted globally, D-Bus transport plugins
were added. After we verified that the application was now able to receive notifications
over both transports we removed the ZeroMQ transport plugins. Upon verification that
the application was able to receive notifications over only the D-Bus transport we added
the ZeroMQ transport plugins again and removed the D-Bus ones. Now the application
was back to the original set of transport plugins.
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4.3.1 Guidelines for Using Notifications and Callbacks

In Chapter 2 we have found that in our system of applications using the notification feature
we have to induce randomness and introduce decoupling when delivering notifications.
Building on these findings and lessons learned in this chapter we will now present
guidelines for preventing emergent misbehavior when using the notification API and
callbacks in particular.

We recall our first research question RQ 1:

RQ 1 (Emergent Misbehavior) What kind of emergent misbehavior can result from
change notifications and how can it be mitigated?

To complete the answer of the second part (mitigation) we will now present guidelines
for mitigating emergent misbehavior and explain them. In Section 2.5 on page 12 we
already answered the first part and the second part partially.

Guideline 1 (Avoid callbacks) Most of the guidelines are related to callbacks. With
normal use of the notification API emergent misbehavior should not occur.

Callbacks couple an application temporally to configuration changes of other applications
or instances of the same application. This observation is the basis for Guidelines 1, 2
and 3. While it is possible with registered variables to check for configuration changes at
regular time intervals and react to changes the coupling is not as tight as with callbacks.

Guideline 2 (Wait before reacting to changes) Waiting after receiving a notifica-
tion decouples an application from changes and reduces the risk for unwanted synchro-
nization (see Section 2.4).

In applications where applying changes has impact on resource usage (e.g. CPU or disk)
applying a time delay as suggested by Guideline 2 is a sensible choice. But this guideline
is not only limited to these applications.

Generally waiting before reacting to changes reduces the risk for unwanted synchronization
by decoupling the application temporally. Waiting can be implemented using random
time delays which further promotes decoupling since applications react at different points
in time to changes. Waiting can also be implemented as seen in the case study in
Section 4.3 where a flag was used to delay the reaction to changes to the key database
configuration.

Guideline 3 (Avoid updates as reaction to change) Avoid changing the configu-
ration as reaction to a change. This reduces the risk for unwanted oscillation (see
Section 2.4).
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While Guideline 3 does not forbid updating the key database using kdbSet() in a
callback it advises to avoid it. If we recall the example from the introduction on page 2
we see how updating as reaction to change leads to unwanted oscillation. If necessary,
the function kdbSet() should be temporally decoupled as suggested in Guideline 2.

This guideline applies especially to callbacks but is also relevant when variables are polled
for changes.

Guideline 4 (Do not use notifications for synchronization) Applications should
not use notifications for synchronization as this can lead to a phase change (see
Section 2.4).

Guideline 4 limits the use of the notification API to notifications about configuration
changes. There are better suited techiques for other use cases. Applications should not
keep track of changes and change their behavior on certain conditions.

For example, this happens when applications synchronize themselves at startup by
incrementing a counter in the key database. When a certain limit of application instances
is reached the applications proceed with different behavior. If this behavior affects other
applications phase change has occured.

Guideline 5 (Apply changes immediately) Call kdbSet() to save updated config-
uration immediately after users changed configuration. This reduces conflicting changes
in the key database.

When a configuration setting is updated by users within an application Guideline 5
suggests to write the change immediately to the key database using kdbSet(). This
ensures that other applications have the same view of the key database and operate on
current settings.

Guideline 6 (Restrictions within callbacks) Notification callbacks are called from
within Elektra. Calling kdbClose(), elektraNotificationClose() or elek-
traSetIoBinding() in a callback leads to undefined behavior. The list of restricted
functions is non-exhaustive.

Guideline 6 originates from the case study (Section 4.3) where an incorrectly placed call
to kdbClose() caused an application crash because the control flow returned from the
callback to now unloaded code. While this can be considered an implementation detail
it aligns with Guideline 2 since reinitialization of KDB uses more resources than other
operations like kdbGet() or kdbSet().

4.4 Discussion
We recall our second research question RQ 2:
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RQ 2 (Comparison) How does the use of notifications compare to polling in an appli-
cation in terms of feasibility, lines of code and CPU usage?

In order to answer feasibility, practicability, and lines of code for this question we have
conducted a case study.

Using only the notification API for target values was feasible in this application. Since use
of the API allows the application to implement changes to its configuration at run-time
we have also shown practicability.

As we have seen in this case study use of the notification API increased the lines of
codes compared to the original compact code for parsing configuration settings. Without
convenient functions for converting values as provided by “libautomation” the difference
would have been smaller.

The difference in lines of code also originates from the fact that “libautomation” and the
new API use different approaches for error handling. Since “libautomation” is built for
automation applications which are typically unattended when library functions cannot
recover from an error the application is restarted. In contrast, the notification API
requires developers to handle errors.

When the semantics of the elektraNotificationRegister() functions are known
readability is not impacted. Developers have to ensure that updates to variables affect
the running application. Using callbacks to respond to configuration changes increases
application complexity since callbacks can be called multiple times which requires not
only initialization but also de-initialization code.

If and how notifications impact central processing unit (CPU) usage will be answered in
the next chapter, “Experimental Evaluation”.
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CHAPTER 5
Experimental Evaluation

Having shown feasibility and compared lines of code of our notification feature in the
previous chapter we now focus on CPU time. In order to complete our answer to research
question RQ 2 we will conduct an experimental evaluation and compare two versions of
the application from our case study. Then we will examine the measurements and and
discuss our findings.

Instructions and code for replicating this evaluation can be found in commit 73ace03
in the “thesis” branch in a fork of the “libautomation” repository1.

5.1 Test Setup
We will use the “humiditycontrol” application from Chapter 4 and compare two versions
of the application: one with “polling” updates and one with “notification” updates.

We will measure the CPU time consumed by both versions using the UNIX command
time. Among other metrics this command measures the number of seconds an application
used the CPU in user mode and kernel mode. The user mode metric accounts for time
the CPU spent for functions of the application and its libraries. The system time metric
accounts for CPU time spent in kernel mode by the operating system for the application
and its libraries. I/O operations like printing a text on the screen typically fall into the
second category. Less CPU time spent by application version means the CPU can spend
more time on other applications or sleep to save power.

For evaluating the “notification” application version that receives notifications we will
use the ZeroMQ transport plugins using the IPC transport. This transport is a local
communication transport that does not involve network interfaces like the transmission
control protocol (TCP) transport does.

1https://repo.or.cz/libautomation/elektra-notification.git, accessed August 2018
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5. Experimental Evaluation

The “polling” version of the application updates its configuration using the kdbGet()
function. It will execute this function at regular time intervals of five seconds. We will
call this interval polling update interval.

While performing the measurements we will run both versions of the application alter-
nately. An external application will update the numeric “highhumidity” target value
configuration setting in the key database with random values. For each iteration both
versions will be measured with configuration updates in increasing intervals from 1 to 60
seconds. We will call this interval configuration update interval.

In order to reduce the impact of application initialization on our measurements the
application will receive 20 configuration updates for each iteration. This results in an
iteration duration of 20 times the configuration update interval. For example if the
configuration update interval is 15 seconds we will measure the CPU time of an application
version for a period of 300 seconds (5 minutes).

Everytime an update is applied both versions of the application convert the string value
of the configuration setting to a numeric value.

5.2 Results
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Figure 5.1: Box plot of user times

Figure 5.1 shows box plots for the user time of each application version. The “notification”
version has a median of 0.12 seconds and an interquartile range of 0.01 seconds while
the “polling” version has a median of 0.22 seconds and an interquartile range of 0.2675
seconds.

Our measurements showed that the system time used by both application versions is
negligible with a median of 0 and a interquartile range of 0 seconds. Figure 5.2 shows box
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Figure 5.2: Box plot of system times

plots for the system time of each application version. Due to these small numbers the
time axis in this box plot has a different scale than the user time box plot in Figure 5.1.
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Figure 5.3: Comparison of user times at different configuration update intervals

Figure 5.3 shows lines of both application versions. The solid line shows the user time of
the “polling” application version for configuration update intervals from 1 to 60 seconds.
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5. Experimental Evaluation

The dashed line shows the user time of the “notification” application version for the same
range. The “polling” version shows a linear growth over the range with a minimum of
0.02 seconds to a maximum of 0.88 seconds while the “notification” version remains fairly
constant at its median of 0.12 seconds. Between a configuration update interval of 8 to 9
seconds both lines intersect.
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Figure 5.4: Comparison of user times relative to iteration duration at different configura-
tion update intervals

Figure 5.4 is based on the same data as Figure 5.3. In this form of presentation the y-axis
shows the amount of user time relative to the iteration duration for both application
versions. The “notification” version has an exponential decay with a minimum value of
1.1667 × 10−4 percent. This is 5.7 times less than the “polling” version with the same
configuration update interval of 60 seconds. The “polling” version remains fairly constant
at a median of 0.00075 percent with an interquartile range of 8.6 × 10−5.

5.3 Discussion

The lines in Figure 5.3 show that when the configuration update interval is less than the
polling update interval the “notification” version is more efficient in terms of CPU time.
This is explained by the “notification” version applying configuration updates less often
than the “polling” version checks for updates using kdbGet(). The “polling” version
checks at a fixed polling update interval regardless of available configuration updates
which steadily increases user time as shown in Figure 5.4. Despite Elektra’s kdbGet()
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function checking if the configuration files have been updated before processing them,
user time is required for these checks regardless of actual configuration updates.

The presentation in Figure 5.4 shows that the user time of the “polling” version remains
fairly constant. Therefore the growth of the “polling” user time is directly proportional
to the iteration duration.

The lines in Figure 5.3 also show that when the configuration update interval is greater
than the polling update interval the “polling” version is more efficient in terms of CPU
time. This is explained by the “notification” version applying configuration updates more
often than the “polling” version. In this case additional updates in the “notification”
version are “lost” since the application runs its control routine which uses the updates
value less often than updates appear.

The fact that the user times of both versions intersect between 8 and 9 seconds and
not when the polling update interval is equal to the configuration update interval at 5
seconds is up to further investigation. This bias likely related to additional initialization
costs for the ZeroMQ transport or optimizations within Elektra.

We can conclude that for long running applications with few expected configuration
updates notifications are more efficient than polling. When the configuration update
interval is greater than a potential polling interval (i.e. an application can only process so
many configuration updates per second) polling is more efficient. This can be countered
for notifications by applying configuration updates at a lower rate (see Guideline 2 from
the case study).
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CHAPTER 6
Conclusion and Future Work

In our case study we have shown that by using our notification architecture, applications
can register for automated updates to variables on configuration changes. It is also possible
to register callbacks that are triggered on configuration changes. This allows applications
to implement configuration changes at run-time without restarts. Futhermore our
notification architecture supports different transport technologies which can be changed
without modification of the involved applications.

After researching current approaches for detection, diagnosis and mitigation of emergent
behavior, we have concluded that the required automatic live detection, diagnosis and
mitigation of emergent misbehavior can only lower the impact of faulty algorithms,
applications or a combination of applications but not repair them. A system that exhibits
emergent misbehavior is inherently faulty and remains so even when mitigation is applied.
Therefore, we have presented guidelines which both raise awareness for the problems at
hand and provide practical advice for application developers.

We have obtained results demonstrating that in scenarios where resource-efficient opera-
tion is required and applications are long running, notifications are superior over polling
for obtaining configuration updates. Likewise we have found that in scenarios where
configuration updates are expected at a high rate, polling is better suited than applying
notification updates immediately. In these scenarios the countermeasures suggested by
our guidelines can reduce the impact of using notifications.

Under the assumption that configuration is written less often than read, the notification
feature should be used instead of polling. The notification feature is obligatory for
applications that need to instantaneously implement configuration changes.

We can now revisit the problem related to emergent behavior in the KDE desktop
environment[2] introduced in Chapter 1. The workaround implemented by the maintainers
was to stop reacting to configuration changes for a certain amount of time. After our
research of emergent behavior we can conclude from an outside point of view that waiting
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was partially the correct solution to stop the occuring oscillation (as per Guideline 2
from Chapter 4). If notifications are distinguishable the solution should ignore only
identical notifications and react to new notifications while waiting. The solution would
be improved if writing changes was temporarily decoupled as advised by Guideline 3.

The current study was limited by available approaches for automatically diagnosing
emergent misbehavior or emergent behavior in general. Further work on this topic would
help develop a more involved way of mitigating emergent misbehavior in Elektra.

Future work might focus on evaluating and implementing random time delays upon
receiving notifications. Time delays integrated into Elektra will relieve application
developers of implementing a correct algorithm that, for example, filters multiple identical
notifications.

An open problem for the ZeroMQ transport plugins is that the hub that forwards
notifications between applications currently represents a single point of failure. Future
work may evaluate whether it is feasible to integrate a hub with automated failover into
ZeroMQ transport plugins.

Furthermore we recommend investigation of the use of Redis as storage and notification
transport technology for Elektra. Redis provides a feature called keyspace notifications
which can serve as trigger for implementing a receiving transport plugin when Redis is
also used as storage for the key database. Redis also has a publish/subscribe feature
which can be used for transport plugins without using it as storage.

After common patterns of applications causing emergent misbehavior in systems of appli-
cations using Elektra have been identified, a test suite can be created which simulates
other applications. This allows application developers to detect possible problems related
to emergent behavior beforehand.

Future work may also include support for the Windows platform, adding an option to use
a separate thread for the notification main loop, integrating notifications into a high-level
API for Elektra or integrating notifications into Elektra’s web-based user interface.
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