
Con�guration Speci�cation Elektrify Architectural Decisions

Con�guration Management

Markus Raab

Institute of Information Systems Engineering, TU Wien

03.04.2019

This work is licensed under a Creative
Commons �Attribution-ShareAlike 4.0
International� license.

Markus Raab Con�guration Management 1/49

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Con�guration Speci�cation Elektrify Architectural Decisions

Lecture is every week Wednesday 09:00 - 11:00.

06.03.2019: topic, teams

13.03.2019: TISS registration, initial PR

20.03.2019: other registrations, guest lecture

27.03.2019: PR for �rst issue done, second started

03.04.2019: �rst issue done, PR for second

10.04.2019: mid-term submission of exercises

08.05.2019: (HS?)

15.05.2019:

22.05.2019:

29.05.2019:

05.06.2019: �nal submission of exercises

12.06.2019:

19.06.2019: last corrections of exercises

26.06.2019: exam

Markus Raab Con�guration Management 2/49

Con�guration Speci�cation Elektrify Architectural Decisions

Popular Topics
14 tools

9 testability

9 code-generation

7 context-awareness

6 speci�cation

6 miscon�guration

6 complexity reduction

5 validation

5 points in time

5 error messages

5 auto-detection

4 user interface

4 introspection

4 design

4 cascading

4 architecture of access

3 con�guration sources

3 con�g-less systems

2 secure conf

2 architectural decisions

1 push vs. pull

1 infrastructure as code

1 full vs. partial

1 convention over conf

1 CI/CD

0 documentation
Markus Raab Con�guration Management 3/49

Con�guration Speci�cation Elektrify Architectural Decisions

Pull Requests

build server and reviews take time

please also add test cases and documentation

put label �ready to merge� after build server, reviews, . . . are
satis�ed

Markus Raab Con�guration Management 4/49

Con�guration Speci�cation Elektrify Architectural Decisions

Deadlines

gradual reduction of points for missed deadlines

if nothing was done before mid-term, only 50% is possible

Examples:

If 7 PRs were done for homework but none of them was done
before mid-term, you get 15 instead of 30 points.

If 7 PRs were done for homework but 2 of them were delayed,
you get 22 instead of 30 points.

Markus Raab Con�guration Management 5/49

Con�guration Speci�cation Elektrify Architectural Decisions

Team Work

Clari�cations needed:

Who does what?

either one more complex or two more simple applications

one needs to write instructions and speci�cation for the other

Markus Raab Con�guration Management 6/49

Con�guration Speci�cation Elektrify Architectural Decisions

Tasks for today

(until 03.04.2019 23:59)

Task

Fix miscon�gurations in private repo.

Task

Add clari�cations and �x feedback about homework/teamwork.
Calculate complexity of your teamwork.

Task

First issue done, PR for second issue and write some text in at least
one other issue (if 5 issues are not yet assigned to you).

Markus Raab Con�guration Management 7/49

Con�guration Speci�cation Elektrify Architectural Decisions

Tasks for next week

(until 10.04.2019 23:59)
mid-term submission of exercises

Task

Submit a �rst version of both teamwork and homework.

Does not need to be complete, important is that you get started.

Task

Second PR done, PR for third issue created and write some text in
at least one other issue (if 5 issues are not yet assigned to you).

Task

Write one architectural decision for your teamwork or Elektra.

Markus Raab Con�guration Management 8/49

Con�guration Speci�cation Elektrify Architectural Decisions

KeySet (Recapitulation)

Question

Describe the common data structure in Elektra.

KeySet Key

key name

value

meta-
data

metakey or property

metakey name or
property name

metakey value or
property value

Markus Raab Con�guration Management 9/49

Con�guration Speci�cation Elektrify Architectural Decisions

Unnecessary Settings [6] (Recapitulation)

Question

How many settings are actually used?

6% to 17% of settings set by majority

up to 54% are seldom set

up to 47% of numeric settings have no more than �ve distinct
values

Markus Raab Con�guration Management 10/49

Con�guration Speci�cation Elektrify Architectural Decisions

Question

How can you reduce the complexity of con�guration settings?

Answer

Con�guration Speci�cation (restrictions, better design, . . .)

unify formats, semantics, . . .

avoid to have them (hard-code, better defaults, . . .)

Markus Raab Con�guration Management 11/49

Con�guration Speci�cation Elektrify Architectural Decisions

Metalevels (Recapitulation)

Question

Describe the three Metalevels in Elektra.

configuration
setting

configuration
specification

specifies (grammar via Ψ)

specifies

meta-specification of
SpecElektra

Markus Raab Con�guration Management 12/49

Con�guration Speci�cation Elektrify Architectural Decisions

learning outcome:

understand concepts of con�guration speci�cations

compare di�erent ways to integrate con�guration speci�cations

remember templates to describe software architecture

Markus Raab Con�guration Management 13/49

Con�guration Speci�cation Elektrify Architectural Decisions

Con�guration Speci�cation

1 Con�guration Speci�cation
How?
Example
Calculate Default Values

2 Elektrify
De�nitions
Lightweight vs. Strong

3 Architectural Decisions

Markus Raab Con�guration Management 14/49

Con�guration Speci�cation Elektrify Architectural Decisions

Task

Brainstorming: What can be part of a con�guration speci�cation?
What can they be used for?

Markus Raab Con�guration Management 15/49

Con�guration Speci�cation Elektrify Architectural Decisions

Q: �Con�guration speci�cation (e.g. XSD/JSON schemas) allows
you to describe possible values and their meaning. Why do/would
you specify con�guration?�

58% for �looking up what the value does�,

51% it helps users to avoid common errors (�so that users
avoid common errors�),

46% to simplify maintenance,

40% for rigorous validation,

39% for documentation generation (for example, man
pages, user guide),

30% for external tools accessing con�guration,

28% for generating user interfaces,

25% for code generation, and

24% for speci�cation of links between con�guration
settings.

Markus Raab Con�guration Management 16/49

Con�guration Speci�cation Elektrify Architectural Decisions

Limitations of Schemata designed for Data

like XSD/JSON schemas

they are already very helpful but:

not key-value based
not easy to introspect
designed to validate data without semantics:
file path vs. presence of file
not always possible to extend with plugins
tied to specific formats (e.g. XML/JSON)

Markus Raab Con�guration Management 17/49

Con�guration Speci�cation Elektrify Architectural Decisions

Limitations of Zero-Con�guration

e.g. gpsd1

broken hardware or protocols

auto-detection may go wrong

the con�guration actually lives elsewhere
(e.g., in the GPS devices)

1www.aosabook.org/en/gpsd.html

Markus Raab Con�guration Management 18/49

www.aosabook.org/en/gpsd.html

Con�guration Speci�cation Elektrify Architectural Decisions

How?

Types of Speci�cations

configuration specifications

context specifications

access specifications

validation specifications

default value
calculations

transformation
specifications

Markus Raab Con�guration Management 19/49

Con�guration Speci�cation Elektrify Architectural Decisions

How?

Task

What do we mean with a con�guration speci�cation?

Task

Which requirements do we have for a con�guration speci�cation?

Markus Raab Con�guration Management 20/49

Con�guration Speci�cation Elektrify Architectural Decisions

How?

Requirements

formal/informal?

complete?

should be extensible

should be external to application

open for introspection (for tooling)

should talk to users

should allow generation of artefacts

Markus Raab Con�guration Management 21/49

Con�guration Speci�cation Elektrify Architectural Decisions

How?

Grammar

〈con�guration speci�cations〉 ::= { 〈con�guration speci�cation〉 }

〈con�guration speci�cation〉 ::= '[' 〈key〉 ']' 〈properties〉

〈properties〉 ::= { 〈property〉 }

〈property〉 ::= 〈property name〉 ':=' [〈property value〉]

Markus Raab Con�guration Management 22/49

Con�guration Speci�cation Elektrify Architectural Decisions

How?

Example

1 [slapd/threads/listener]

2 default :=1

3 type := long

Markus Raab Con�guration Management 23/49

Con�guration Speci�cation Elektrify Architectural Decisions

Example

Options

Environment and command-line options can be considered with:

1 [recursive]

2 type := boolean

3 opt :=r

4 opt/long := recursive

5 env := RECURSIVE

6 default :=0

Markus Raab Con�guration Management 24/49

Con�guration Speci�cation Elektrify Architectural Decisions

Example

Visibility

idea: show only relevant settings for speci�c user group

or disallow editing: accessibility

requires user-feedback loops [6]

most-used settings should be best visible (or even enforce
them to be changed: against harmful defaults)

think of your users (administrators),
only expose what users need

write an rationale why someone needs it

visibility should not be an excuse to add not-needed settings

Markus Raab Con�guration Management 25/49

Con�guration Speci�cation Elektrify Architectural Decisions

Example

Example

1 [slapd/threads/listener]

2 visibility := developer

3
4 [slapd/access /#]

5 visibility := user

Markus Raab Con�guration Management 26/49

Con�guration Speci�cation Elektrify Architectural Decisions

Example

Task

Brainstorming: Now, how do we implement such a speci�cation?

Markus Raab Con�guration Management 27/49

Con�guration Speci�cation Elektrify Architectural Decisions

Example

Possible Implementations

tooling (GUI, Web UI)

generate examples/documentation

auto-completion/syntax highlighting/IDE support

plugins in con�guration framework (hide settings)

Markus Raab Con�guration Management 28/49

Con�guration Speci�cation Elektrify Architectural Decisions

Example

Task

Break.

Markus Raab Con�guration Management 29/49

Con�guration Speci�cation Elektrify Architectural Decisions

Calculate Default Values

idea: make default value better

is the generalization of sharing con�guration values

can be combined with visibility

can be derived from other con�guration settings

can be derived from context [4]

can be derived from hardware/system (problem with
dependences)

XServer vs. gpsd

Markus Raab Con�guration Management 30/49

Con�guration Speci�cation Elektrify Architectural Decisions

Calculate Default Values

Examples

Sharing:

1 [slapd/threads/listener]

2 fallback /#0 := slapd/threads

Percentages
(e.g., con�gured image should be additionally cropped):

1 [image/width]

2 type := long

3
4 [crop]

5 type := long

6 check/range := 0-100

Markus Raab Con�guration Management 31/49

Con�guration Speci�cation Elektrify Architectural Decisions

Calculate Default Values

Examples

Context:

1 [slapd/threads/listener]

2 context :=/slapd/threads/%cpu%/listener

Calculation with conditionals plugin
(e.g., switch o� GPS if battery low):

1 [gps/status]

2 assign :=(battery > 'low') ? ('on') : ('off')

Markus Raab Con�guration Management 32/49

Con�guration Speci�cation Elektrify Architectural Decisions

Calculate Default Values

Question

How do we get such an speci�cation now?

Answer

Elektrify: Make the application use a con�guration library that has
support for con�guration speci�cations.

Markus Raab Con�guration Management 33/49

Con�guration Speci�cation Elektrify Architectural Decisions

Elektrify

1 Con�guration Speci�cation
How?
Example
Calculate Default Values

2 Elektrify
De�nitions
Lightweight vs. Strong

3 Architectural Decisions

Markus Raab Con�guration Management 34/49

Con�guration Speci�cation Elektrify Architectural Decisions

De�nitions

Con�guration Access APIs

An application programming interface (API)
de�nes boundaries on source code level. Better APIs
make the execution environment easier and more
uniformly accessible.
Con�guration access is the part of every software
system concerned with fetching and storing
con�guration settings from and to the execution
environment. There are many ways to access
con�guration [2, 3, 5]. Con�guration access
APIs are APIs that enable con�guration access.

Markus Raab Con�guration Management 35/49

Con�guration Speci�cation Elektrify Architectural Decisions

De�nitions

Con�guration Access APIs

Task

Which con�guration access APIs do you know?
What are the di�erences between these APIs?

For example:

char * getenv (const char * key)

ConfigStatus xf86HandleConfigFile(Bool autoconfig)

long pathconf (const char *path, int name)

long sysconf (int name)

size_t confstr (int name, char *buf, size_t len)

Markus Raab Con�guration Management 36/49

Con�guration Speci�cation Elektrify Architectural Decisions

De�nitions

Con�guration Access Points

Within the source code the con�guration access points are
con�guration access API invocations that return con�guration
values.

1 int main()

2 {

3 getenv ("PATH");

4 }

Markus Raab Con�guration Management 37/49

Con�guration Speci�cation Elektrify Architectural Decisions

De�nitions

Con�guration Libraries

Con�guration libraries provide implementations for a
con�guration access API.
Trends:

�exibility to con�gure con�guration access (e.g., https://
commons.apache.org/proper/commons-configuration/)

more type safety (e.g., http://owner.aeonbits.org/, code
generation in next lecture)

try to unify something (UCI, Augeas, Elektra)

Markus Raab Con�guration Management 38/49

https://commons.apache.org/proper/commons-configuration/
https://commons.apache.org/proper/commons-configuration/
http://owner.aeonbits.org/

Con�guration Speci�cation Elektrify Architectural Decisions

Lightweight vs. Strong

Lightweight Integration

Specify already-existing con�guration �les:

1 [ntp]

2 mountpoint :=ntp.conf

3 infos/plugins :=ntp

Works well for con�guration management tools.

Markus Raab Con�guration Management 39/49

Con�guration Speci�cation Elektrify Architectural Decisions

Lightweight vs. Strong

Medium Integration

Having frontends that implement existing APIs decouple
applications from each other. These applications continue to use
their speci�c con�guration accesses, but Elektra redirects their
con�guration accesses to the shared key database.
Possible APIs:

getenv (implemented in bindings/intercept/env)

open/close of con�guration �les

Also needs application-speci�c speci�cations.

Markus Raab Con�guration Management 40/49

Con�guration Speci�cation Elektrify Architectural Decisions

Lightweight vs. Strong

Strong Integration

Change the application so that it directly uses Elektra.
Advantages:

Elektra's features always available

more type safety

administrators can choose con�guration �le formats

noti�cation and logging

only one parser involved

no speci�cation for binding needed

no built-in defaults: everything is introspectable

Markus Raab Con�guration Management 41/49

Con�guration Speci�cation Elektrify Architectural Decisions

Lightweight vs. Strong

Strong Integration

Di�erent implementations strategies:

have some application-speci�c API which uses KeySet

use one of KeySet's language bindings

use Elektra's high-level API (currently only C)

code generation

Markus Raab Con�guration Management 42/49

Con�guration Speci�cation Elektrify Architectural Decisions

Lightweight vs. Strong

Task

What will you use for the teamwork?

Markus Raab Con�guration Management 43/49

Con�guration Speci�cation Elektrify Architectural Decisions

Architectural Decisions

1 Con�guration Speci�cation
How?
Example
Calculate Default Values

2 Elektrify
De�nitions
Lightweight vs. Strong

3 Architectural Decisions

Markus Raab Con�guration Management 44/49

Con�guration Speci�cation Elektrify Architectural Decisions

Software Architecture

architecture is high-level description of the overall system

use ready-made patterns and templates for architecture

e.g., http://arc42.org/

architectural decisions [1] essential (e.g., Chapter 9 in arc42)

Markus Raab Con�guration Management 45/49

http://arc42.org/

Con�guration Speci�cation Elektrify Architectural Decisions

Architectural Decisions

describe decisions that lead to the architecture

open decisions are high-level con�guration

useful to have patterns [1] and templates, too

template: problem, constraints, assumptions, considered
alternatives, decision, rationale, implications, related, notes

Markus Raab Con�guration Management 46/49

Con�guration Speci�cation Elektrify Architectural Decisions

Why are con�guration settings added?

The typical reasons are:

1 a requirement,

2 an architectural decision,

3 a technical need, and

4 an ad hoc decision.

Markus Raab Con�guration Management 47/49

Con�guration Speci�cation Elektrify Architectural Decisions

in Con�guration Speci�cation

1 [slapd/threads/listener]

2 description := adjust to use more threads

3 rationale := needed for many -core systems

4 requirement := 1234

5 visibility := developer

Markus Raab Con�guration Management 48/49

Con�guration Speci�cation Elektrify Architectural Decisions

Conclusion

alarming trend in number and complexity of con�guration

sharing, visibility and default value calculation may help

but also more courageous decisions and periodical reevaluation

both need abstraction: con�guration speci�cation

Markus Raab Con�guration Management 49/49

References

[1] Neil B Harrison, Paris Avgeriou, and Uwe Zdun. Using patterns
to capture architectural decisions. Software, IEEE, 24(4):38�45,
2007. ISSN 0740-7459. doi: 10.1109/MS.2007.124.

[2] Dongpu Jin, Xiao Qu, Myra B. Cohen, and Brian Robinson.
Con�gurations everywhere: Implications for testing and
debugging in practice. In Companion Proceedings of the 36th
International Conference on Software Engineering, ICSE
Companion 2014, pages 215�224, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2768-8. doi:
10.1145/2591062.2591191. URL
http://dx.doi.org/10.1145/2591062.2591191.

Markus Raab Con�guration Management 1/3

http://dx.doi.org/10.1145/2591062.2591191

References

[3] Emre Kiciman and Yi-Min Wang. Discovering correctness
constraints for self-management of system con�guration. In
International Conference on Autonomic Computing, 2004.
Proceedings., pages 28�35. IEEE, May 2004. doi:
10.1109/ICAC.2004.1301344.

[4] Markus Raab and Gergö Barany. Introducing context awareness
in unmodi�ed, context-unaware software. In Proceedings of the
12th International Conference on Evaluation of Novel
Approaches to Software Engineering - Volume 1: ENASE,,
pages 218�225. INSTICC, ScitePress, 2017. ISBN
978-989-758-250-9. doi: 10.5220/0006326602180225.

[5] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei
Sheng, Ding Yuan, Yuanyuan Zhou, and Shankar Pasupathy.
Do not blame users for miscon�gurations. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 244�259. ACM, 2013.

Markus Raab Con�guration Management 2/3

References

[6] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar
Pasupathy, and Rukma Talwadker. Hey, you have given me too
many knobs! Understanding and dealing with over-designed
con�guration in system software. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 307�319, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3675-8. doi:
10.1145/2786805.2786852. URL
http://dx.doi.org/10.1145/2786805.2786852.

Markus Raab Con�guration Management 3/3

http://dx.doi.org/10.1145/2786805.2786852

	Configuration Specification
	How?
	Example
	Calculate Default Values

	Elektrify
	Definitions
	Lightweight vs. Strong

	Architectural Decisions

