
Modularity Plugins

Con�guration Management

Markus Raab

Institute of Information Systems Engineering, TU Wien

10.04.2019

This work is licensed under a Creative
Commons �Attribution-ShareAlike 4.0

International� license.

Markus Raab Con�guration Management 1/34

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en


Modularity Plugins

Lecture is every week Wednesday 09:00 - 11:00.

06.03.2019: topic, teams

13.03.2019: TISS registration, initial PR

20.03.2019: other registrations, guest lecture

27.03.2019: PR for �rst issue done, second started

03.04.2019: �rst issue done, PR for second

10.04.2019: mid-term submission of exercises

08.05.2019: Di�erent Location: Complang Libary

15.05.2019:

22.05.2019:

29.05.2019:

05.06.2019: �nal submission of exercises

12.06.2019:

19.06.2019: last corrections of exercises

26.06.2019: exam

Markus Raab Con�guration Management 2/34



Modularity Plugins

Tasks for today

(until 10.04.2019 23:59)
mid-term submission of exercises

Task

Submit a �rst version of both teamwork and homework.

Does not need to be complete, important is that you get started.

Task

Second PR done, PR for third issue created and write some text in
at least one other issue (if 5 issues are not yet assigned to you).

Task

Write one architectural decision for your teamwork or Elektra.

Markus Raab Con�guration Management 3/34



Modularity Plugins

Tasks for after eastern

(until 08.05.2019 23:59)

Task

Incorporate feedback for teamwork and homework.

Task

Third PR done, PR for fourth issue created and write some text in
at least one other issue (if 5 issues are not yet assigned to you).

Markus Raab Con�guration Management 4/34



Modularity Plugins

Popular Topics
14 tools

9 testability

9 code-generation

7 context-awareness

6 speci�cation

6 miscon�guration

6 complexity reduction

5 validation

5 points in time

5 error messages

5 auto-detection

4 user interface

4 introspection

4 design

4 cascading

4 architecture of access

3 con�guration sources

3 con�g-less systems

2 secure conf

2 architectural decisions

1 push vs. pull

1 infrastructure as code

1 full vs. partial

1 convention over conf

1 CI/CD

0 documentation
Markus Raab Con�guration Management 5/34



Modularity Plugins

Recapitulation

alarming trend in number and complexity of con�guration

sharing, visibility and default value calculation may help

but also more courageous decisions and periodical reevaluation

both need abstraction: con�guration speci�cation

Markus Raab Con�guration Management 6/34



Modularity Plugins

Metalevels (Recapitulation)

Question

Describe the three Metalevels in Elektra.

configuration
setting

configuration
specification

specifies (grammar via Ψ)

specifies

meta-specification of
SpecElektra

Markus Raab Con�guration Management 7/34



Modularity Plugins

SpecElektra

SpecElektra is a modular con�guration
speci�cation language for con�guration
settings. In SpecElektra we use properties to
specify con�guration settings and
con�guration access. SpecElektra enables us
to specify di�erent parts of Elektra.

Markus Raab Con�guration Management 8/34



Modularity Plugins

Recapitulation (Requirements of SpecElektra)

formal and informal

should strive for completeness

should be extensible

should be external to application

open for introspection (for tooling)

should talk to users

should allow generation of artefacts

Markus Raab Con�guration Management 9/34



Modularity Plugins

Goals for today

modularity on system level

horizontal
vertical

system-wide introspection

avoiding dependences

auto-detection

Markus Raab Con�guration Management 10/34



Modularity Plugins

Modularity

1 Modularity
Vertical
Horizontal

2 Plugins
Why?
How?

Markus Raab Con�guration Management 11/34



Modularity Plugins

Status Quo in Free Systems

nearly all applications use their own con�guration system

immense di�erences in con�guration �le formats and
con�guration access

very high modularity

Markus Raab Con�guration Management 12/34



Modularity Plugins

Status Quo in Frameworks and Proprietary Systems

obvious ways how to deal with con�guration

no di�erences in con�guration access

very low modularity

Markus Raab Con�guration Management 13/34



Modularity Plugins

Types of Modularity

Vertical modularity describes how strongly separated
the con�guration accesses of di�erent applications is.
Horizontal modularity describes how strongly
separated modules implementing con�guration access
for a single application is.

Markus Raab Con�guration Management 14/34



Modularity Plugins

Vertical

Vertical Modularity [1]

Vertical modularity is the degree of separation between di�erent
applications. If all applications use the same key database with a
single backend or a single con�guration �le, applications would be
coupled tightly. [...]
If coupling between applications is low, for example every
application uses a di�erent con�guration library or a di�erent
backend, we have a high degree of vertical modularity.

Markus Raab Con�guration Management 15/34



Modularity Plugins

Vertical

Retain Vertical Modularity [1]

Elektra provides two mechanisms to retain vertical modularity:

Mounting con�guration �les facilitates di�erent applications
to use their own backend and their own con�guration �le.
Furthermore, mounting enables integrating existing
con�guration �les into the key database. Con�guration
speci�cations written in SpecElektra allow di�erent
applications to share their con�guration �les with each other
in a controlled way.

Having frontends that implement existing APIs decouple
applications from each other. These applications continue to
use their speci�c con�guration accesses, but Elektra redirects
their con�guration accesses to the shared key database.

Markus Raab Con�guration Management 16/34



Modularity Plugins

Vertical

Vertical Modularity [1]

Mountpoints can also be a part of the speci�cation:

1 [ntp]

2 mountpoint :=ntp.conf

3 [sw/libreoffice]

4 mountpoint := libreoffice.conf

Task

Which type of speci�cation is this?

Markus Raab Con�guration Management 17/34



Modularity Plugins

Vertical

Types of Speci�cations

configuration specifications

context specifications

access specifications

validation specifications

default value
calculations

transformation
specifications

Markus Raab Con�guration Management 18/34



Modularity Plugins

Vertical

Vertical Modularity

Sp
ec

E
le

kt
ra

gpsd

batteryd

F1

ntpd

F2

L1

L2

locationtrackerd

lt.conf

battery

ntp.conf
F3

Needed to keep
applications
independently.
Boxes are applications,
cylinders are
con�guration �les, F?
are frontends or frontend
adapters, L? are
con�guration
libraries [1].

Markus Raab Con�guration Management 19/34



Modularity Plugins

Vertical

Task

Break.

Markus Raab Con�guration Management 20/34



Modularity Plugins

Horizontal

Horizontal Modularity [1]

Horizontal modularity is �the degree of separation in
con�guration access code� [1]. A higher degree of horizontal
modularity allows us to better separate con�guration access code
and plug the code together as needed.

Markus Raab Con�guration Management 21/34



Modularity Plugins

Horizontal

Three factors of SpecElektra improve horizontal modularity:

1 Using SpecElektra, applications are completely decoupled from
con�guration speci�cations.

2 Speci�cations and their implementation are decoupled.

3 Abstract dependences within the implementation of
speci�cations.

Task

This is very vague.
Can you describe a system that would (not) ful�l this?

Markus Raab Con�guration Management 22/34



Modularity Plugins

Horizontal

Horizontal Modularity
Sp

ec
E

le
kt

ra

Key Database (Elektra)

P1

P3 P3

P2

P1 P4

lt.conf

battery

ntp.conf

Needed for validation,
auto-detection, . . .

Cylinders are
con�guration �les, P?
are plugins [1]

Markus Raab Con�guration Management 23/34



Modularity Plugins

Plugins

1 Modularity
Vertical
Horizontal

2 Plugins
Why?
How?

Markus Raab Con�guration Management 24/34



Modularity Plugins

Why?

Acceptable E�ort

Q: �Which e�ort do you think is worthwhile for providing better

con�guration experience?�

44% would use other con�guration access APIs next to
getenv.

30% would use OS-speci�c sources.

21% would use dedicated libraries.

19% would read other application's con�guration settings,

16% would use external con�guration access APIs that add
new dependences.

Markus Raab Con�guration Management 25/34



Modularity Plugins

Why?

Why?

Finding

Q: Most developers have concerns adding dependences for more
validation (84%) but consider good defaults important (80%).

Requirement

Dependences exclusively needed to validate con�guration settings

must be avoided.

Markus Raab Con�guration Management 26/34



Modularity Plugins

Why?

Rationale

Why is it di�cult to have good defaults?

Modularity: diverse and con�icting requirements between
applications. Especially in validation, for example,
constraint solvers vs. type systems vs. model checkers.

System-level: speci�cation must always be enforced.
Examples:

which desktop is the application started in?
how many CPUs does the system have?
get the correct proxy of the system.
get available network bandwidth.
is the filesystem local?

Markus Raab Con�guration Management 27/34



Modularity Plugins

How?

Plugins are �lters, sinks, and sources processing a
key set. We aim at SpecElektra to be as modular as
possible and make extensive use of plugins:

1 SpecElektra does not have any built-in feature, all
features are (or can be) implemented as plugins.

2 Elektra works completely without SpecElektra's
speci�cations.

3 Con�guration speci�cations are present within
the execution environment. Thus any tool and
plugin can introspect and use the speci�cations.

Markus Raab Con�guration Management 28/34



Modularity Plugins

How?

KeySet

The common data structure between plugins:

KeySet Key

key name

value

meta-
data

metakey or property

metakey name or
property name

metakey value or
property value

Markus Raab Con�guration Management 29/34



Modularity Plugins

How?

Plugin Assembly

automatic assembling of plugins:

iterate over the speci�cation and collect all key words

iterate over all plugins and check if they o�er key words

check contract between plugins and speci�cation

of the remaining plugins: use best suited or rated

(implemented in kdb mount / kdb spec-mount in Elektra)

Markus Raab Con�guration Management 30/34



Modularity Plugins

How?

SpecElektra is a dependency injection mechanism:

By extending the speci�cation, new plugins are being injected
into the system.

The provider abstractions in the dependences between the
plugins abstract over concrete implementations of
con�guration access code.

We have a modular implementation of SpecElektra.

Task

Which kind of modularity does provider improve?

Answer

3rd point of horizontal modularity on Slide 22

Markus Raab Con�guration Management 31/34



Modularity Plugins

How?

Examples

calculation with context:

1 [gps/status]

2 assign :=(battery > 'low') ? ('on') : ('off')

3 [battery]

4 plugins := battery

Markus Raab Con�guration Management 32/34



Modularity Plugins

How?

Examples

resolve names of con�guration �les

1 [example]

2 mountpoint :=/ example.ini

depending on operating system, e.g. UNIX:
namespace resolved path

spec /example.ini

dir ${PWD}/example.ini

user ${HOME}/example.ini

system /example.ini

Markus Raab Con�guration Management 33/34



Modularity Plugins

How?

Preview

next lecture after eastern:
code generation vs. introspection

Markus Raab Con�guration Management 34/34



References

[1] Markus Raab. Improving system integration using a modular
con�guration speci�cation language. In Companion Proceedings

of the 15th International Conference on Modularity,
MODULARITY Companion 2016, pages 152�157, New York,
NY, USA, 2016. ACM. ISBN 978-1-4503-4033-5. doi:
10.1145/2892664.2892691. URL
http://dx.doi.org/10.1145/2892664.2892691.

Markus Raab Con�guration Management 1/1

http://dx.doi.org/10.1145/2892664.2892691

	Modularity
	Vertical
	Horizontal

	Plugins
	Why?
	How?

	Appendix

