
Code Generation Introspection vs. Generation

Con�guration Management

Markus Raab

Institute of Information Systems Engineering, TU Wien

08.05.2018

This work is licensed under a Creative
Commons �Attribution-ShareAlike 4.0

International� license.

Markus Raab Con�guration Management 1/42

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Code Generation Introspection vs. Generation

Lecture is every week Wednesday 09:00 - 11:00.

06.03.2019: topic, teams

13.03.2019: TISS registration, initial PR

20.03.2019: other registrations, guest lecture

27.03.2019: PR for �rst issue done, second started

03.04.2019: �rst issue done, PR for second

10.04.2019: mid-term submission of exercises

08.05.2019: di�erent location: Complang Libary

15.05.2019:

22.05.2019: all 5 issues done

29.05.2019:

05.06.2019: �nal submission of exercises

12.06.2019:

19.06.2019: last corrections of exercises

26.06.2019: exam

Markus Raab Con�guration Management 2/42

Code Generation Introspection vs. Generation

Tasks for today

(until 08.05.2019 23:59)

Task

Incorporate feedback for teamwork and homework.

Task

Third PR done, PR for fourth issue created and write some text in
your last issue (if 5 issues are not yet assigned to you).

Markus Raab Con�guration Management 3/42

Code Generation Introspection vs. Generation

Tasks for next week

(until 15.05.2019 23:59)

Task

Fourth PR done, PR for �fth issue created.

Task

Continue teamwork and homework.

Markus Raab Con�guration Management 4/42

Code Generation Introspection vs. Generation

Popular Topics
14 tools

9 testability

9 code-generation

7 context-awareness

6 speci�cation

6 miscon�guration

6 complexity reduction

5 validation

5 points in time

5 error messages

5 auto-detection

4 user interface

4 introspection

4 design

4 cascading

4 architecture of access

3 con�guration sources

3 con�g-less systems

2 secure conf

2 architectural decisions

1 push vs. pull

1 infrastructure as code

1 full vs. partial

1 convention over conf

1 CI/CD

0 documentation
Markus Raab Con�guration Management 5/42

Code Generation Introspection vs. Generation

Metalevels (Recapitulation)

Question

Describe the three Metalevels in Elektra.

configuration
setting

configuration
specification

specifies (grammar via Ψ)

specifies

meta-specification of
SpecElektra

Markus Raab Con�guration Management 6/42

Code Generation Introspection vs. Generation

SpecElektra (Recapitulation)

SpecElektra is a modular con�guration
speci�cation language for con�guration
settings. In SpecElektra we use properties to
specify con�guration settings and
con�guration access. SpecElektra enables us
to specify di�erent parts of Elektra.

Markus Raab Con�guration Management 7/42

Code Generation Introspection vs. Generation

Recapitulation (Requirements of SpecElektra)

formal and informal

should strive for completeness

should be extensible

should be external to application

open for introspection (for tooling)

should talk to users

should allow generation of artefacts

Markus Raab Con�guration Management 8/42

Code Generation Introspection vs. Generation

Modularity (Recapitulation)

Vertical modularity describes how strongly separated
the con�guration accesses of di�erent applications is.
Horizontal modularity describes how strongly
separated modules implementing con�guration access
for a single application is.

Markus Raab Con�guration Management 9/42

Code Generation Introspection vs. Generation

Vertical Modularity (Recapitulation)

Question

Explain the content of the �gure.

Sp
ec

E
le

kt
ra

gpsd

batteryd

F1

ntpd

F2

L1

L2

locationtrackerd

lt.conf

battery

ntp.conf
F3

Markus Raab Con�guration Management 10/42

Code Generation Introspection vs. Generation

Plugins (Recapitulation)

Plugins are �lters, sinks, and sources processing a
key set. We aim at SpecElektra to be as modular as
possible and make extensive use of plugins:

1 SpecElektra does not have any built-in feature, all
features are (or can be) implemented as plugins.

2 Elektra works completely without SpecElektra's
speci�cations.

3 Con�guration speci�cations are present within
the execution environment. Thus any tool and
plugin can introspect and use the speci�cations.

Markus Raab Con�guration Management 11/42

Code Generation Introspection vs. Generation

Introspection (Recapitulation)

uni�ed get/set access to (meta*)-key/values

access via applications, CLI, GUI, web-UI, ...

access via any programming language (similar to �le systems)

GUI, web-UI can semantically interpret metadata

Markus Raab Con�guration Management 12/42

Code Generation Introspection vs. Generation

Goals for today

learning outcome:

evaluate a con�guration system and decide about use of

code generation
system-wide introspection

Markus Raab Con�guration Management 13/42

Code Generation Introspection vs. Generation

Code Generation

1 Code Generation
Why?
How?

2 Introspection vs. Generation

Markus Raab Con�guration Management 14/42

Code Generation Introspection vs. Generation

Why?

Task

How to ensure that con�guration access points match with present
con�guration settings?

Markus Raab Con�guration Management 15/42

Code Generation Introspection vs. Generation

Why?

Rationale (Partly Recapitulation)

Con�guration Speci�cation:

without speci�cation you and others do not even know which
settings are available

needed for any further techniques we will discuss:

code generation guarantees that configuration access points
match with specification
validation guarantees that configuration settings match with
specification

essential for no-futz computing Holland et al. [1]

the foundation for any advanced tooling like con�guration
management tools

needed as communication of producers and consumers of
con�guration

Markus Raab Con�guration Management 16/42

Code Generation Introspection vs. Generation

Why?

Current Challenges

Con�guration access code usually has:

code duplications and unsafe APIs

hard-coded default values

unexpected transformations (e.g., truncating of values)

inconsistencies (e.g., case sensitivity)

no introspection facilities (which keys and values are allowed?)

Example (Silent Overruling [4])

1 if (! strcasecmp(token , "on")) {

2 *var = 1;

3 } else {

4 *var = 0;

5 } /* src/cache_cf.cc from Squid */

Markus Raab Con�guration Management 17/42

Code Generation Introspection vs. Generation

Why?

Real-world example

PostgreSQL1 has following duplications for its con�guration
settings:

a global variable and an option record (struct)

an entry in an example (postgresql.conf.sample)

documentation in sgml

in the source code of utils (in-source dump utils, and dozens of
external con�guration management tools)

Note: PostgreSQL has a clean implementation, and above list only
shows limitations of systems without code generation.

1http://doxygen.postgresql.org/guc_8c_source.html

Markus Raab Con�guration Management 18/42

http://doxygen.postgresql.org/guc_8c_source.html

Code Generation Introspection vs. Generation

Why?

Task

Brainstorming: Which artefacts can we produce with (code)
generation?

Markus Raab Con�guration Management 19/42

Code Generation Introspection vs. Generation

Why?

Artefacts:

examples (e.g., defaults)

documentation

auto-completion/syntax highlighting/IDE support

tooling (GUI, Web UI)

validation code

con�guration management tool code

con�guration access APIs

Markus Raab Con�guration Management 20/42

Code Generation Introspection vs. Generation

Why?

Goal

Goal

Con�guration settings should adhere the speci�cation from source
to destination.

Requirement

The speci�cation must enable code generation and inconsistencies

must be ruled out during compilation.

Markus Raab Con�guration Management 21/42

Code Generation Introspection vs. Generation

How?

Code Generation

The code generator GenElektra reads SpecElektra speci�cations
and emits high-level APIs to be used in applications. GenElektra
facilitates the key names to generate unique API names.

But how?

Markus Raab Con�guration Management 22/42

Code Generation Introspection vs. Generation

How?

KeySet (Recapitulation)

The common data structure between plugins:

KeySet Key

key name

value

meta-
data

metakey or property

metakey name or
property name

metakey value or
property value

Markus Raab Con�guration Management 23/42

Code Generation Introspection vs. Generation

How?

KeySet Generation

Question

Idea: What if the con�guration �le format grammar describes
source code?

〈KeySet〉 ::= `ksNew' (' { 〈Key〉 `, ←↩' } { ` ' } `KS_END);'

〈Key〉 ::= `keyNew (� ' 〈key name〉 `� , ←↩' [〈Value〉]
〈properties〉 `KEY_END)'

〈Value〉 ::= { ` ' } `KEY_VALUE, � ' 〈con�guration value〉 `� ,
←↩'

〈properties〉 ::= { { ` ' } 〈property〉 `, ←↩' }

〈property〉 ::= `KEY_META, ' <property name> ` ,
 ' <property value> ` '

Markus Raab Con�guration Management 24/42

Code Generation Introspection vs. Generation

How?

Task

Break.

Markus Raab Con�guration Management 25/42

Code Generation Introspection vs. Generation

How?

Example

Example

Given the key spec:/slapd/threads/listener, with the
con�guration value 4 and the property default 7→ 1, GenElektra
emits:

1 ksNew (keyNew ("spec:/slapd/threads/listener",

2 KEY_VALUE , "4",

3 KEY_META , "default", "1",

4 KEY_END),

5 KS_END);

Finding

We have source code representing the settings. And if we
instantiate it, we have a data structure representing the settings.
Plugins emitting such �con�guration �les� are code generators.

Markus Raab Con�guration Management 26/42

Code Generation Introspection vs. Generation

How?

Implementation Strategies

Using print (only for very small generators)
Using generative grammars

1 query = '{' >> *(pair) > '}';

2 pair = '{' >> key_name > '=' >> key_value >>

3 *('{' >> metakey_name > '=' >> metakey_value > '}')

4 > '}';

Using template languages (RubyERB, Cheetah, Mustache)
1 @for n in hierarchy.name.split('/')[1:-1]
2 namespace $support.nsnpretty($n)
3 {
4 class ${hierarchy.prettyclassname(support)}
5 {
6 typedef $support.typeof($hierarchy.info) type;
7 @if $support.typeof($hierarchy.info) != "kdb:: none_t"
8 static type get(kdb:: KeySet &ks , kdb::Key const& spec)
9 {

10 type value $support.valof($hierarchy.info)
11 Key found(ckdb:: ksLookup(ks.getKeySet (), *spec ,
12 ckdb:: elektraLookupOptions :: KDB_O_SPEC));
13 return found.get <$support.typeof($hierarchy.info)>();
14 }

Markus Raab Con�guration Management 27/42

Code Generation Introspection vs. Generation

How?

Possible Properties

For example, SpecElektra has following properties:

type represents the type to be used in the emitted source
code.

opt is used for short command-line options to be copied
to the namespace proc.

opt/long is used for long command-line options, which di�er
from short command-line options by supporting
strings and not only characters.

readonly yields compilation errors when developers assign a
value to a contextual value within the program.

default enables us to start the application even if the backend
does not work.

Markus Raab Con�guration Management 28/42

Code Generation Introspection vs. Generation

How?

With the speci�cation:

1 [foo/bar]

2 default := Hello

3 type := string

4 opt :=b

5 readonly :=1

GenElektra gives the user read-only access to the object
env.foo.bar:

1 std::cout << env.foo.bar;

2 env.foo.bar = "Other world"; // comp. error

Line 1 prints the configuration value of /foo/bar or "Hello" (without
quotes) by default. When invoking the application with
application -b "This world", the application would print
"This world" (without quotes). Line 2 leads to a compilation error
because of the property readonly.

Markus Raab Con�guration Management 29/42

Code Generation Introspection vs. Generation

How?

Which Con�guration Access API?

First approach, one class (or function) per con�guration setting:

1 class SlapdThreadsListener : public Value <long ,

2 WritePolicyIs <ReadOnlyPolicy >> {

3 ... keyNew ("/slapd/threads/listener",

4 KEY_META , "type", "long",

5 KEY_META , "readonly", "1",

6 KEY_END) ...

7 };

Markus Raab Con�guration Management 30/42

Code Generation Introspection vs. Generation

How?

Which Con�guration Access API?

Bad idea, manual instantiation and long names necessary:

1 KeySet config;

2 Context c;

3 long foo ()

4 {

5 SlapdThreadsListener slapdThreadsListener (config , c);

6 slapdThreadsListener ++;

7 return slapdThreadsListener;

8 }

Markus Raab Con�guration Management 31/42

Code Generation Introspection vs. Generation

How?

Which Con�guration Access API?

Use hierarchy with namespaces or nested classes:

1 namespace slapd

2 {

3 namespace threads

4 {

5 class Listener : public Value <long > {};

6 } // <continues on the next page >

7 class Threads : public Value <none_t >

8 {threads :: Listener listener ;};

9 } // end namespace slapd

10 class Slapd : public Value <none_t >

11 {slapd:: Threads threads ;};

12 class Environment {Slapd slapd ;};

Markus Raab Con�guration Management 32/42

Code Generation Introspection vs. Generation

How?

Which Con�guration Access API?

Much easier to use:

1 long foo(slapd:: Threads const & threads)

2 {

3 threads.listener ++;

4 Context & c = threads.context ();

5 return threads.listener;

6 }

7
8 int main()

9 {

10 KeySet config;

11 Context c;

12 Environment env (config , c);

13 long x = foo (env.slapd.threads);

14 }
Markus Raab Con�guration Management 33/42

Code Generation Introspection vs. Generation

How?

Which Con�guration Access API?

In C, we use identi�ers to be passed to the highlevel API1:

1 elektraGetString (elektra , ELEKTRA_TAG_MY);

Where ELEKTRA_TAG_MY is a struct for that type.

We can also omit the type:

1 elektraGetLong (elektra , ELEKTRA_TAG_THREADS);

2 elektraGet (elektra , ELEKTRA_TAG_THREADS);

1https://www.libelektra.org/tutorials/high-level-api

Markus Raab Con�guration Management 34/42

https://www.libelektra.org/tutorials/high-level-api

Code Generation Introspection vs. Generation

How?

Guarantees by code generation:

Every con�guration setting is speci�ed.

(Data) type of source code and con�guration settings match.

Con�guration access with defaults is always successful.
Reason: We use defaults if everything else fails.

Missing Guarantee: Is every speci�ed setting actually used?

Markus Raab Con�guration Management 35/42

Code Generation Introspection vs. Generation

Introspection vs. Generation

1 Code Generation
Why?
How?

2 Introspection vs. Generation

Markus Raab Con�guration Management 36/42

Code Generation Introspection vs. Generation

Question

Introspection vs. Code Generation?

Markus Raab Con�guration Management 37/42

Code Generation Introspection vs. Generation

Limitations of introspection:

no static checks

no whole-program optimizations (API barriers)

Markus Raab Con�guration Management 38/42

Code Generation Introspection vs. Generation

Overhead without code generation (=backend) is 1.8x higher [2]:

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

Number of properties override

E
xe

c
u
ti
o
n
 t
im

e
 (

s
)

backend

frontend

Markus Raab Con�guration Management 39/42

Code Generation Introspection vs. Generation

But it might not matter because con�guration access might not be
a bottleneck [2], for example, a word counting application:

process 64%

kdb.open 17%

kdb.get 11%

overhead 5%
lookup 3%

kdb.get 11%

kdb.open 17%

lookup 3%

overhead 5%

process 64%

But: Con�guration access points within loops might be a
bottleneck.

Markus Raab Con�guration Management 40/42

Code Generation Introspection vs. Generation

Advantages of introspection:

speci�cation can be updated live on the system without
recompilation

tooling has generic access to all speci�cations

new features the key database (e.g., better validation) are
immediately available consistently

Implication

We generally prefer introspection, except for a very thin
con�guration access API.

Requirement

Con�guration settings and speci�cations must be introspectable.

Markus Raab Con�guration Management 41/42

Code Generation Introspection vs. Generation

Preview

Testing

Early Detection of Miscon�guration

Markus Raab Con�guration Management 42/42

References

[1] David A. Holland, William Josephson, Kostas Magoutis,
Margo I. Seltzer, Christopher A. Stein, and Ada Lim. Research
issues in no-futz computing. In Hot Topics in Operating

Systems, 2001. Proceedings of the Eighth Workshop on, pages
106�110. IEEE, May 2001. doi: 10.1109/HOTOS.2001.990069.

[2] Markus Raab. Sharing software con�guration via speci�ed links
and transformation rules. In Technical Report from KPS 2015,
volume 18. Vienna University of Technology, Complang Group,
2015.

[3] Markus Raab and Gergö Barany. Introducing context awareness
in unmodi�ed, context-unaware software. In Proceedings of the

12th International Conference on Evaluation of Novel

Approaches to Software Engineering - Volume 1: ENASE,,
pages 218�225. INSTICC, ScitePress, 2017. ISBN
978-989-758-250-9. doi: 10.5220/0006326602180225.

Markus Raab Con�guration Management 1/2

References

[4] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei
Sheng, Ding Yuan, Yuanyuan Zhou, and Shankar Pasupathy.
Do not blame users for miscon�gurations. In Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems

Principles, pages 244�259. ACM, 2013.

Markus Raab Con�guration Management 2/2

	Code Generation
	Why?
	How?

	Introspection vs. Generation

