
Introspection Testability Early Detection

Con�guration Management

Markus Raab

Institute of Information Systems Engineering, TU Wien

15.05.2018

This work is licensed under a Creative
Commons �Attribution-ShareAlike 4.0

International� license.

Markus Raab Con�guration Management 1/32

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en


Introspection Testability Early Detection

Lecture is every week Wednesday 09:00 - 11:00.

06.03.2019: topic, teams

13.03.2019: TISS registration, initial PR

20.03.2019: other registrations, guest lecture

27.03.2019: PR for �rst issue done, second started

03.04.2019: �rst issue done, PR for second

10.04.2019: mid-term submission of exercises

08.05.2019: di�erent location: Complang Libary

15.05.2019:

22.05.2019: all 5 issues done

29.05.2019:

05.06.2019: �nal submission of exercises

12.06.2019:

19.06.2019: last corrections of exercises

26.06.2019: exam

Markus Raab Con�guration Management 2/32



Introspection Testability Early Detection

Tasks for today

(until 15.05.2019 23:59)

Task

Fourth PR done, PR for �fth issue created.

Markus Raab Con�guration Management 3/32



Introspection Testability Early Detection

Tasks for next week

(until 22.05.2019 23:59)

Task

All issues done.

Task

Continue teamwork and homework.

Markus Raab Con�guration Management 4/32



Introspection Testability Early Detection

Popular Topics
14 tools

9 testability

9 code-generation

7 context-awareness

6 speci�cation

6 miscon�guration

6 complexity reduction

5 validation

5 points in time

5 error messages

5 auto-detection

4 user interface

4 introspection

4 design

4 cascading

4 architecture of access

3 con�guration sources

3 con�g-less systems

2 secure conf

2 architectural decisions

1 push vs. pull

1 infrastructure as code

1 full vs. partial

1 convention over conf

1 CI/CD

0 documentation
Markus Raab Con�guration Management 5/32



Introspection Testability Early Detection

Goals for today

learning outcome:

evaluate a con�guration system and decide about

use of code generation (recapitulation)
use of system-wide introspection
testability
time of validation

Markus Raab Con�guration Management 6/32



Introspection Testability Early Detection

Introspection

1 Introspection

2 Testability

3 Early Detection

Markus Raab Con�guration Management 7/32



Introspection Testability Early Detection

Introspection (Recapitulation)

Question

What can introspection o�er?

uni�ed get/set access to (meta*)-key/values

access via applications, CLI, GUI, web-UI, ...

access via any programming language (similar to �le systems)

GUI, web-UI can semantically interpret metadata

Markus Raab Con�guration Management 8/32



Introspection Testability Early Detection

Internal Speci�cation

For example, OWNER:

1 import org.aeonbits.owner.Config;

2
3 public interface ServerConfig extends Config {

4 int port ();

5 String hostname ();

6 @DefaultValue("42")

7 int maxThreads ();

8 }

Markus Raab Con�guration Management 9/32



Introspection Testability Early Detection

Question

Why do we need an external speci�cation?

Introspection:

needed as communication of producers and consumers of
con�guration

the foundation for any advanced tooling like con�guration
management tools

essential for no-futz computing Holland et al. [2]

Markus Raab Con�guration Management 10/32



Introspection Testability Early Detection

External Speci�cation

1 [port]

2 type := long

3 [hostname]

4 default := 42

5 [threads/max]

6 type := long

Advantages:

are read and writable by other applications (introspection)

we can generate the internal speci�cation (code generation)

we ful�ll needs for con�guration management tools

Markus Raab Con�guration Management 11/32



Introspection Testability Early Detection

Other Artefacts (Recapitulation):

examples (e.g., defaults)

documentation

auto-completion/syntax highlighting/IDE support

tooling (GUI, Web UI)

validation code

parsing code (e.g., command-line parsing)

con�guration management tool code

con�guration access APIs

Markus Raab Con�guration Management 12/32



Introspection Testability Early Detection

KeySet (Recapitulation)

The common data structure between plugins:

KeySet Key

key name

value

meta-
data

metakey or property

metakey name or
property name

metakey value or
property value

Markus Raab Con�guration Management 13/32



Introspection Testability Early Detection

KeySet Generation (Recapitulation)

Question

Idea: What if the con�guration �le format grammar describes
source code?

key spec:/slapd/threads/listener, with the con�guration
value 4 and the property default 7→ 1:

1 ksNew (keyNew ("spec:/slapd/threads/listener",

2 KEY_VALUE , "4",

3 KEY_META , "default", "1",

4 KEY_END),

5 KS_END );

Finding

We get source code representing the settings.

Markus Raab Con�guration Management 14/32



Introspection Testability Early Detection

Possible Properties (Recapitulation)

For example, SpecElektra has following properties:

type represents the type to be used in the emitted source
code.

opt is used for short command-line options to be copied
to the namespace proc.

opt/long is used for long command-line options, which di�er
from short command-line options by supporting
strings and not only characters.

readonly yields compilation errors when developers assign a
value to a contextual value within the program.

default enables us to start the application even if the backend
does not work.

Markus Raab Con�guration Management 15/32



Introspection Testability Early Detection

(Recapitulation)

Question

Introspection vs. Code Generation?

− more techniques for performance improvements with code
generation

+ speci�cation can be updated live on the system without
recompilation

+ tooling has generic access to all speci�cations
+ new features the key database (e.g., better validation) are

immediately available consistently

Implication

We generally prefer introspection, except for a very thin
con�guration access API.

Markus Raab Con�guration Management 16/32



Introspection Testability Early Detection

Testability

1 Introspection

2 Testability

3 Early Detection

Markus Raab Con�guration Management 17/32



Introspection Testability Early Detection

Question

What do we want to test?

That settings do what they should (devs and admins)

That settings are properly validated (devs [7])

Regression tests [5]

Are all settings implemented?

Are all settings used in tests?

Are there unused settings in the code?

Markus Raab Con�guration Management 18/32



Introspection Testability Early Detection

Matt Welsh from Google wrote in 2013:1

�Of course we have extensive testing infrastructure, but the `hard'

problems always come up when running in a real production

environment, with real tra�c and real resource constraints. Even

integration tests and canarying are a joke compared to how

complex production-scale systems are.�

1What I wish systems researchers would work on. Retrieved from
http://matt-welsh.blogspot.com/2013/05/what-i-wish-systems-researchers-
would.html.

Markus Raab Con�guration Management 19/32



Introspection Testability Early Detection

Jin et al. [3]

Wants to improve con�guration-aware testing and debugging

Manual investigations for three applications

Finds 1957 settings in Firefox (2846 ∗ 31111) and
36322 in LibreO�ce (24433 ∗ 331889)
Finds unused settings: settings only in the source code

Finds unsynchronized con�guration settings

Requirement

Con�guration setting traceability is a necessity.

Idea

Code generation helps to trace settings and to �nd unused settings.

Markus Raab Con�guration Management 20/32



Introspection Testability Early Detection

Testing by developers:

ConfErr [4] uses models of key board layout, psychology and
linguistics. Tool injects possible miscon�guration.

Spex [7] analyzes the source code to �nd miscon�gurations.
As by-product it extracts internal speci�cations (including
transformation bugs).

External speci�cation can be directly used to generate test
cases.

Find unused con�guration settings.

Markus Raab Con�guration Management 21/32



Introspection Testability Early Detection

Task

Break.

Markus Raab Con�guration Management 22/32



Introspection Testability Early Detection

Find Unused Settings

The �rst (optional) step of the algorithm is:

Run all tests with code coverage.

Check if generated code is executed.

If it is, we know that the con�guration setting is used in a test
case. Otherwise, we know it is not tested by the test suite. All
these untested con�guration settings are remembered as
candidates for the second step.

Markus Raab Con�guration Management 23/32



Introspection Testability Early Detection

1 KeySet findUnusedSettings (KeySet untestedSettings ,
2 KDB kdb ,
3 Builder build)
4 {
5 KeySet unusedSettings = {};
6 KeySet configurationSpecification;
7 kdb.get (configurationSpecification );
8
9 for (candidate: untestedSettings)

10 {
11 configurationSpecification.remove (candidate );
12 kdb.set (configurationSpecification );
13 build.recompile ();
14 if (build.wasSuccessful ())
15 {
16 unusedSettings.append (candidate );
17 }
18 configurationSpecification.append (candidate );
19 }
20
21 kdb.set (configurationSpecification );
22 return unusedSettings;
23 }

Markus Raab Con�guration Management 24/32



Introspection Testability Early Detection

Early Detection

1 Introspection

2 Testability

3 Early Detection

Markus Raab Con�guration Management 25/32



Introspection Testability Early Detection

When are settings used?

Implementation-time con�guration accesses are hard-coded
settings in the source code repository. For example,
architectural decisions [1] lead to
implementation-time settings.

Compile-time con�guration accesses are con�guration accesses
resolved by the build system while compiling the code.

Deployment-time con�guration accesses are con�guration accesses
while the software is installed.

Load-time con�guration accesses are con�guration accesses
during the start of applications.

Run-time con�guration accesses are con�guration accesses
during execution not limited to the startup procedure.

Markus Raab Con�guration Management 26/32



Introspection Testability Early Detection

Latent Miscon�guration

Phases when we can detect miscon�gurations:

Compilation stage in con�guration management tool

Writing con�guration settings on nodes

Starting applications (load-time)

When con�guration setting is actually used (run-time)

Problem

More context vs. easier to detect and �x.

Markus Raab Con�guration Management 27/32



Introspection Testability Early Detection

As shown by Xu et al. [8]:

12% � 39% con�guration settings are not used at all during
initialization.

Applications often have latent miscon�gurations (14% � 93%)

Latent miscon�gurations are particular severe (75% of
high-severity miscon�gurations)

Latent miscon�guration needs longer to diagnose

Markus Raab Con�guration Management 28/32



Introspection Testability Early Detection

Checkers as plugins

Using checkers as plugins exclude whole classes of errors such as:

Invalid �le paths using the plugin �path�.

Invalid IP addresses or host names using the plugins �network�
or �ipaddr�.

Because the checks occur before the resources are actually used,
the checks are subject to race conditions.1

In some situations facilities of the operating system help2, in others
we have fundamental problems.3

1For example, a path that was present during the check, can have been
removed when the application tries to access it.

2For example, we open the �le during the check and pass
/proc/<pid>/fd/<fd> to the application. This �le cannot be unlinked, but
unfortunately the �le descriptor requires resources.

3For example, if the host we want to reach has gone o�ine after validation.
Markus Raab Con�guration Management 29/32



Introspection Testability Early Detection

Example [8]

Squid uses diskd_program but not before requests are served.
Latent miscon�guration caused 7h downtime and 48h diagnosis
e�ort.

Finding

Con�guration from all externals programs need to be checked, too.

Markus Raab Con�guration Management 30/32



Introspection Testability Early Detection

Conclusion

provide external speci�cations for other tooling and
con�guration management

use code generation to keep internal speci�cations consistent
with external speci�cations

implement checkers as plugins

execute checkers as early as possible, also for external
programs executed later

keep important resources allocated after checking

Markus Raab Con�guration Management 31/32



Introspection Testability Early Detection

Preview

Documentation

Noti�cation

Context-Awareness

Markus Raab Con�guration Management 32/32



References

[1] Neil B Harrison, Paris Avgeriou, and Uwe Zdun. Using patterns
to capture architectural decisions. Software, IEEE, 24(4):38�45,
2007. ISSN 0740-7459. doi: 10.1109/MS.2007.124.

[2] David A. Holland, William Josephson, Kostas Magoutis,
Margo I. Seltzer, Christopher A. Stein, and Ada Lim. Research
issues in no-futz computing. In Hot Topics in Operating

Systems, 2001. Proceedings of the Eighth Workshop on, pages
106�110. IEEE, May 2001. doi: 10.1109/HOTOS.2001.990069.

[3] Dongpu Jin, Xiao Qu, Myra B. Cohen, and Brian Robinson.
Con�gurations everywhere: Implications for testing and
debugging in practice. In Companion Proceedings of the 36th

International Conference on Software Engineering, ICSE
Companion 2014, pages 215�224, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2768-8. doi:
10.1145/2591062.2591191. URL
http://dx.doi.org/10.1145/2591062.2591191.

Markus Raab Con�guration Management 1/4

http://dx.doi.org/10.1145/2591062.2591191


References

[4] Lorenzo Keller, Prasang Upadhyaya, and George Candea.
Conferr: A tool for assessing resilience to human con�guration
errors. In Dependable Systems and Networks With FTCS and

DCC, 2008., pages 157�166. IEEE, 2008.

[5] Xiao Qu, Myra B. Cohen, and Gregg Rothermel.
Con�guration-aware regression testing: An empirical study of
sampling and prioritization. In Proceedings of the 2008

International Symposium on Software Testing and Analysis,
ISSTA '08, pages 75�86, New York, NY, USA, 2008. ACM.
ISBN 978-1-60558-050-0. doi: 10.1145/1390630.1390641. URL
http://doi.acm.org/10.1145/1390630.1390641.

Markus Raab Con�guration Management 2/4

http://doi.acm.org/10.1145/1390630.1390641


References

[6] Markus Raab and Gergö Barany. Introducing context awareness
in unmodi�ed, context-unaware software. In Proceedings of the

12th International Conference on Evaluation of Novel

Approaches to Software Engineering - Volume 1: ENASE,,
pages 218�225. INSTICC, ScitePress, 2017. ISBN
978-989-758-250-9. doi: 10.5220/0006326602180225.

[7] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei
Sheng, Ding Yuan, Yuanyuan Zhou, and Shankar Pasupathy.
Do not blame users for miscon�gurations. In Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems

Principles, pages 244�259. ACM, 2013.

Markus Raab Con�guration Management 3/4



References

[8] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu,
Long Jin, and Shankar Pasupathy. Early Detection of
Con�guration Errors to Reduce Failure Damage. In Proceedings

of the 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI'16), Savannah, GA, USA,
November 2016.

Markus Raab Con�guration Management 4/4


	Introspection
	Testability
	Early Detection

