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Introspection Testability Early Detection

Lecture is every week Wednesday 09:00 - 11:00.

06.03.2019: topic, teams

13.03.2019: TISS registration, initial PR

20.03.2019: other registrations, guest lecture

27.03.2019: PR for �rst issue done, second started

03.04.2019: �rst issue done, PR for second

10.04.2019: mid-term submission of exercises

08.05.2019: di�erent location: Complang Libary

15.05.2019:

22.05.2019: all 5 issues done

29.05.2019:

05.06.2019: �nal submission of exercises

12.06.2019:

19.06.2019: last corrections of exercises

26.06.2019: exam
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Introspection Testability Early Detection

Tasks for today

(until 15.05.2019 23:59)

Task

Fourth PR done, PR for �fth issue created.
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Tasks for next week

(until 22.05.2019 23:59)

Task

All issues done.

Task

Continue teamwork and homework.
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Introspection Testability Early Detection

Popular Topics
14 tools

9 testability

9 code-generation

7 context-awareness

6 speci�cation

6 miscon�guration

6 complexity reduction

5 validation

5 points in time

5 error messages

5 auto-detection

4 user interface

4 introspection

4 design

4 cascading

4 architecture of access

3 con�guration sources

3 con�g-less systems

2 secure conf

2 architectural decisions

1 push vs. pull

1 infrastructure as code

1 full vs. partial

1 convention over conf

1 CI/CD

0 documentation
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Goals for today

learning outcome:

evaluate a con�guration system and decide about

use of code generation (recapitulation)
use of system-wide introspection
testability
time of validation
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Introspection

1 Introspection

2 Testability

3 Early Detection
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Introspection (Recapitulation)

Question

What can introspection o�er?

uni�ed get/set access to (meta*)-key/values

access via applications, CLI, GUI, web-UI, ...

access via any programming language (similar to �le systems)

GUI, web-UI can semantically interpret metadata
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Internal Speci�cation

For example, OWNER:

1 import org.aeonbits.owner.Config;

2
3 public interface ServerConfig extends Config {

4 int port ();

5 String hostname ();

6 @DefaultValue("42")

7 int maxThreads ();

8 }

Markus Raab Con�guration Management 9/32



Introspection Testability Early Detection

Question

Why do we need an external speci�cation?

Introspection:

needed as communication of producers and consumers of
con�guration

the foundation for any advanced tooling like con�guration
management tools

essential for no-futz computing Holland et al. [2]
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External Speci�cation

1 [port]

2 type := long

3 [hostname]

4 default := 42

5 [threads/max]

6 type := long

Advantages:

are read and writable by other applications (introspection)

we can generate the internal speci�cation (code generation)

we ful�ll needs for con�guration management tools
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Other Artefacts (Recapitulation):

examples (e.g., defaults)

documentation

auto-completion/syntax highlighting/IDE support

tooling (GUI, Web UI)

validation code

parsing code (e.g., command-line parsing)

con�guration management tool code

con�guration access APIs
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KeySet (Recapitulation)

The common data structure between plugins:

KeySet Key

key name

value

meta-
data

metakey or property

metakey name or
property name

metakey value or
property value
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KeySet Generation (Recapitulation)

Question

Idea: What if the con�guration �le format grammar describes
source code?

key spec:/slapd/threads/listener, with the con�guration
value 4 and the property default 7→ 1:

1 ksNew (keyNew ("spec:/slapd/threads/listener",

2 KEY_VALUE , "4",

3 KEY_META , "default", "1",

4 KEY_END),

5 KS_END );

Finding

We get source code representing the settings.
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Possible Properties (Recapitulation)

For example, SpecElektra has following properties:

type represents the type to be used in the emitted source
code.

opt is used for short command-line options to be copied
to the namespace proc.

opt/long is used for long command-line options, which di�er
from short command-line options by supporting
strings and not only characters.

readonly yields compilation errors when developers assign a
value to a contextual value within the program.

default enables us to start the application even if the backend
does not work.
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(Recapitulation)

Question

Introspection vs. Code Generation?

− more techniques for performance improvements with code
generation

+ speci�cation can be updated live on the system without
recompilation

+ tooling has generic access to all speci�cations
+ new features the key database (e.g., better validation) are

immediately available consistently

Implication

We generally prefer introspection, except for a very thin
con�guration access API.
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Testability

1 Introspection

2 Testability

3 Early Detection
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Question

What do we want to test?

That settings do what they should (devs and admins)

That settings are properly validated (devs [7])

Regression tests [5]

Are all settings implemented?

Are all settings used in tests?

Are there unused settings in the code?
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Matt Welsh from Google wrote in 2013:1

�Of course we have extensive testing infrastructure, but the `hard'

problems always come up when running in a real production

environment, with real tra�c and real resource constraints. Even

integration tests and canarying are a joke compared to how

complex production-scale systems are.�

1What I wish systems researchers would work on. Retrieved from
http://matt-welsh.blogspot.com/2013/05/what-i-wish-systems-researchers-
would.html.
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Jin et al. [3]

Wants to improve con�guration-aware testing and debugging

Manual investigations for three applications

Finds 1957 settings in Firefox (2846 ∗ 31111) and
36322 in LibreO�ce (24433 ∗ 331889)
Finds unused settings: settings only in the source code

Finds unsynchronized con�guration settings

Requirement

Con�guration setting traceability is a necessity.

Idea

Code generation helps to trace settings and to �nd unused settings.
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Testing by developers:

ConfErr [4] uses models of key board layout, psychology and
linguistics. Tool injects possible miscon�guration.

Spex [7] analyzes the source code to �nd miscon�gurations.
As by-product it extracts internal speci�cations (including
transformation bugs).

External speci�cation can be directly used to generate test
cases.

Find unused con�guration settings.
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Task

Break.
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Find Unused Settings

The �rst (optional) step of the algorithm is:

Run all tests with code coverage.

Check if generated code is executed.

If it is, we know that the con�guration setting is used in a test
case. Otherwise, we know it is not tested by the test suite. All
these untested con�guration settings are remembered as
candidates for the second step.
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1 KeySet findUnusedSettings (KeySet untestedSettings ,
2 KDB kdb ,
3 Builder build)
4 {
5 KeySet unusedSettings = {};
6 KeySet configurationSpecification;
7 kdb.get (configurationSpecification );
8
9 for (candidate: untestedSettings)

10 {
11 configurationSpecification.remove (candidate );
12 kdb.set (configurationSpecification );
13 build.recompile ();
14 if (build.wasSuccessful ())
15 {
16 unusedSettings.append (candidate );
17 }
18 configurationSpecification.append (candidate );
19 }
20
21 kdb.set (configurationSpecification );
22 return unusedSettings;
23 }
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Early Detection

1 Introspection

2 Testability

3 Early Detection
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When are settings used?

Implementation-time con�guration accesses are hard-coded
settings in the source code repository. For example,
architectural decisions [1] lead to
implementation-time settings.

Compile-time con�guration accesses are con�guration accesses
resolved by the build system while compiling the code.

Deployment-time con�guration accesses are con�guration accesses
while the software is installed.

Load-time con�guration accesses are con�guration accesses
during the start of applications.

Run-time con�guration accesses are con�guration accesses
during execution not limited to the startup procedure.
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Latent Miscon�guration

Phases when we can detect miscon�gurations:

Compilation stage in con�guration management tool

Writing con�guration settings on nodes

Starting applications (load-time)

When con�guration setting is actually used (run-time)

Problem

More context vs. easier to detect and �x.
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As shown by Xu et al. [8]:

12% � 39% con�guration settings are not used at all during
initialization.

Applications often have latent miscon�gurations (14% � 93%)

Latent miscon�gurations are particular severe (75% of
high-severity miscon�gurations)

Latent miscon�guration needs longer to diagnose
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Checkers as plugins

Using checkers as plugins exclude whole classes of errors such as:

Invalid �le paths using the plugin �path�.

Invalid IP addresses or host names using the plugins �network�
or �ipaddr�.

Because the checks occur before the resources are actually used,
the checks are subject to race conditions.1

In some situations facilities of the operating system help2, in others
we have fundamental problems.3

1For example, a path that was present during the check, can have been
removed when the application tries to access it.

2For example, we open the �le during the check and pass
/proc/<pid>/fd/<fd> to the application. This �le cannot be unlinked, but
unfortunately the �le descriptor requires resources.

3For example, if the host we want to reach has gone o�ine after validation.
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Example [8]

Squid uses diskd_program but not before requests are served.
Latent miscon�guration caused 7h downtime and 48h diagnosis
e�ort.

Finding

Con�guration from all externals programs need to be checked, too.
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Conclusion

provide external speci�cations for other tooling and
con�guration management

use code generation to keep internal speci�cations consistent
with external speci�cations

implement checkers as plugins

execute checkers as early as possible, also for external
programs executed later

keep important resources allocated after checking
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Preview

Documentation

Noti�cation

Context-Awareness
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